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AbstrAct
Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain 

tumors (PBTs) is limited. Therefore, we investigated the association between single 
nucleotide polymorphisms (SNPs), identified by candidate gene-association studies 
on adult brain tumors, and PBT risk.

The study is based on the largest series of PBT cases to date. Saliva DNA from 245 
cases and 489 controls, aged 7–19 years at diagnosis/reference date, was genotyped 
for 68 SNPs. Data were analyzed using unconditional logistic regression.

The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility 
to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, 
stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were 
associated with a decreased risk of astrocytoma subtype. Furthermore, an increased 
risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, 
ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype 
associated with XRCC4rs7721416 and XRCC4rs2662242 were detected.

This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, 
and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA 
repair pathways variations associated with susceptibility to adult brain tumors also 
seem to be associated with PBT risk, suggesting pediatric and adult brain tumors 
might share similar etiological pathways.
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IntroductIon

Brain tumors are the most common pediatric solid 
tumors and the leading cause of cancer mortality in 
children. High-dose ionizing radiation and rare inherited 
syndromes are the only established risk factors for brain 
tumors, causing a small proportion of cases [1]. Thus, brain 
tumors are considered as multifactorial disorders resulting 
from progressive accumulation of genetic and epigenetic 
alterations in concert with environmental exposures. 
It has been suggested that genetic polymorphisms in 
four main pathways including DNA repair, cell cycle, 
metabolism, and inflammation play an important role 
in brain carcinogenesis [2]. Therefore, candidate gene-
association studies of adult brain tumors have mainly 
focused on these four hypothesized pathways to identify 
genetic susceptibility factors for adult brain tumors [3–9].   

Whereas a considerable number of candidate 
gene-association studies are available on adult brain 
tumors, very few and small genetic studies have been 
performed on brain tumors in children and adolescents 
[10–13], due to difficulties in collecting a sufficient 
number of DNA samples. Hence, the role of genetic 
polymorphisms in pediatric brain tumor (PBT) etiology 
is largely unknown. However, some studies have found 
similar genetic mutation patterns for adult and pediatric 
brain tumor progression within specific histological types 
[14–18]. These similarities in prognostic factors provide 
an important starting point for identifying candidate 
genetic risk factors for PBTs; that might be similar to those 
involved in adult brain tumorigenesis [19]. Moreover, in 
our previous genetic association study of PBT risk, we 
concluded that single nucleotide polymorphisms (SNPs) 
identified by genome-wide association studies (GWAS) 
on adult glioma might also be associated with the risk of 
brain tumors in children [20]. 

The aim of this study, which represents the largest 
series of PBT cases to date, was to determine whether the 
SNPs identified by candidate gene-association studies on 
adult brain tumors, involved in the four main pathways 
discussed above, are also related to pediatric brain tumor 
risk.

results

We successfully genotyped 63 SNPs in 245 cases 
and 489 controls. The distributions of allele frequencies in 
3 SNPs (rs4444903, rs9288516, and rs61754966) were not 
in agreement with HWE (p < 0.001) and therefore these 
SNPs were dropped from analyses. As shown in Table 1, 
the age and sex distributions were similar in cases and 
controls.

As Table 2 illustrates, the A alleles of EGFR 
rs730437 (ORDOM 0.59 [95% CI 0.42-0.83], p = 0.002) 
and EGFR rs11506105 (ORDOM 0.71 [95% CI 0.51–0.98], 
p = 0.036) involved in cell cycle pathway were associated 

with decreased susceptibility to PBTs, whereas the A allele 
of ERCC1 rs3212986 (ORDOM 1.53 [95% CI 1.11–2.09], 
p = 0.009) involved in DNA repair pathway was associated 
with an increased risk of these tumors. Moreover, the 
interactions between these SNPs and covariates including 
age, sex and country were not significant.

The stratified analyses of two histological subtypes 
indicated that the protective effect of EGFR rs730437 
remained significant in both patients with astrocytoma 
and non-astrocytoma tumor subtypes (pDOM=0.018 
and pDOM=0.014, respectively), whereas the risk effect 
of ERCC1 rs3212986 was more evident in patients 
with astrocytoma subtype (pDOM=0.002). Moreover, a 
decreased risk of astrocytoma subtype associated with 
the C alleles of CHAF1A rs243341 and rs2992 as well 
as the T allele of XRCC1 rs25487 involved in DNA 
repair pathway was detected (pDOM=0.040, pDOM=0.049, 
and pDOM=0.033, respectively). In addition, the stratified 
analyses showed an increased risk of non-astrocytoma 
tumor subtype associated with the C alleles of EGFR 
rs9642393, EME1 rs12450550, and ATM rs170548, 
and the T allele of GLTSCR1 rs1035938 (pREC=0.021, 
pREC=0.001, pDOM=0.041, and pREC=0.027, respectively) 
as well as a decreased risk of this subtype associated 
with the A allele of XRCC4 rs7721416 and the C allele 
of XRCC4 rs2662242 (DNA repair pathway) (pREC=0.032 
and pREC=0.024, respectively) (Tables 3 and 4).

Non-significant findings as well as the significant 
findings with wide confidence intervals are shown in the 
online appendix Tables S1–S3.

Strong LD (D´ ≥ 0.95) was observed between 
four genotyped SNPs in EGFR (rs730437, rs11506105, 
rs4947986, and rs3752651) in which five haplotypes with 
frequency of > 1% were detected. In the EGFR block, 
the distribution of haplotypes was suggestively different 
between PBT patients and controls (χ2 = 8.1, df = 4,  
p = 0.089) and the most common haplotype (CGGT) had a 
significant risk effect compared with the other haplotypes 
combined (OR 1.31 [95% CI 1.05–1.64], p = 0.017) 
(Table 5). In the astrocytoma subgroup, the CHAF1A block 
(rs243341, rs105038, rs243356, and rs2992) with three 
haplotypes with frequency of >1% was found; however, 
the distribution of haplotypes in this haploblock was 
not significantly different between patients and controls  
(χ2 = 2.95, df = 2, p = 0.229). Moreover, in the non-
astrocytoma subgroup, two haploblocks including ATM 
(rs228599, rs664143, rs170548, rs3092993, and rs3092992) 
and XRCC4 (rs7721416 and rs2662242) with, respectively, 
five and three haplotypes with frequency of > 1% were 
observed; nevertheless, in none of these haploblocks, 
the distribution of haplotypes was significantly different 
between patients and controls (χ2 = 1.92, df = 4, p = 0.751 
and χ2 = 2.98, df = 2, p = 0.226, respectively).

As described above, 248 testing procedures were 
performed. When the Bonferroni correction is applied, 
the reference p value is 0.0002 for an experiment-wide 
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table 1: characteristics of cases and controls

characteristics cases Astrocytomas non-astrocytomas controls 

no. of participants 245 134 111 489

sex

Males 136 (56%) 74 (55%) 62 (56%) 261 (53%)

Females 109 (44%) 60 (45%) 49 (44%) 228 (47%)

Age-group 
(at diagnosis/reference date)

7–9 years old 48 (20%) 28 (21%) 20 (18%) 112 (23%)

10–14 years old 108 (44%) 60 (45%) 48 (43%) 219 (45%)

15–19 years old 89 (36%) 46 (34%) 43 (39%) 158 (32%)

country

Sweden 106 (43%) 48 (36%) 58 (52%) 174 (36%)

Norway 24 (10%) 15 (11%) 9 (8%) 62 (13%)

Denmark 62 (25%) 37 (28%) 25 (23%) 134 (27%)

Switzerland 53 (22%) 34 (25%) 19 (17%) 119(24%) 

type of tumor 
(Iccc-3 group III)a

Astrocytoma (IIIb) 134 (55%)

Pilocytic astrocytoma 93
Supependymal giant cell astrocytoma 5
Pleomorphic xanthoastrocytoma 4
Diffuse astrocytoma 13
Anaplastic astrocytoma 11
Fibrillary astrocytoma 2
Glioblastoma 5
Giant cell glioblastoma 1

Other gliomas (IIId) 20 (8%)

Malignant glioma 11
Oligoastrocytoma 2
Oligodendroglioma 6
Anaplastic oligodendroglioma 1

Ependymoma (IIIa) 19 (8%)

Subependymoma 2
Choroid plexus papilloma 4
Choroid plexus caricinoma 1
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significance level of 0.05, and 0.0004 for a significance 
level of 0.10; none of the reported associations met these 
limits. As summarized in Table S4, no significant SNP-
SNP interactions were observed (p < 0.001).

dIscussIon

This study suggests that SNPs involved in cell 
cycle and DNA repair pathways previously linked 
with brain tumors in adults are also associated with 
pediatric brain tumorigenesis. The results indicate that 
the A alleles of EGFR rs730437 and rs11506105 may 
decrease susceptibility to PBTs, whereas the A allele of 
ERCC1 rs3212986 may increase the risk of these tumors. 
Moreover, the C alleles of CHAF1A rs243341 and 
rs2992 as well as the T allele of XRCC1 rs25487 were 
associated with a decreased risk of astrocytoma subtype. 
In addition, an increased risk of non-astrocytoma tumor 
subtype associated with the C alleles of EGFR rs9642393, 
EME1 rs12450550, and ATM rs170548, and the T allele 
of GLTSCR1 rs1035938 as well as a decreased risk of this 
subtype associated with the A allele of XRCC4 rs7721416 
and the C allele of XRCC4 rs2662242 were detected. 

Genetic and epigenetic aberrations involved in cell 
cycle and DNA repair pathways have been proposed to 
play a role in PBT pathogenesis and progression [21–25]. 
Overexpression of the epidermal growth factor receptor 
(EGFR), which plays an important role in cell growth and 

development through the cell cycle pathway, is shown to 
be common and correlated with tumor grade in pediatric 
brain tumors [26, 27] . The function of genetic variants 
of EGFR is still unclear; however, intronic variations of 
EGFR found in this study may affect EGFR expression 
and play a role in pediatric brain tumorigenesis.

DNA repair is an important mechanism to maintain 
genomic stability and its functional failure may lead to 
carcinogenesis. Somatic variations of DNA repair genes 
have been identified in PBTs [28–30]; however, no study 
has investigated the role of DNA repair gene variations in 
PBT etiology. In this study, we examined the association 
between PBT risk and 37 SNPs in 17 DNA repair genes, 
shown to be associated with risk of adult brain tumors. Of 
these, 9 SNPs in 7 DNA repair genes (ERCC1, CHAF1A, 
XRCC1, EME1, ATM, GLTSCR1, and XRCC4) were also 
associated with susceptibility to PBTs. A few studies have 
previously indicated that DNA repair gene alterations may 
increase the predisposition to cancer formation in children 
[31, 32]. Moreover, these variations might predict the 
tumor drug sensitivity and the treatment outcome [33]. 

The ERCC1 gene encodes excision repair cross-
complementing group 1 which is involved in DNA 
nucleotide excision repair (NER) pathway [34]. The result 
of association between the A allele of ERCC1 rs3212986 
and increased risk of PBTs is in line with our finding in a 
meta-analysis of this polymorphism in adult brain tumors 
[3]. XRCC1 which encodes an enzyme named X-ray 

Ependymoma 7
Papillary ependymoma 1
Anaplastic ependymoma 4

Intracranial embryonal tumors (IIIc) 7 (3%)

CNS primitive neuroectodermal tumor 6
Neuroepithelioma 1

Other specified intracranial neoplasms (IIIe) 49 (20%)

Germinoma 7
Yolk sac tumor 1
Teratoma, mature 1
Haemangioblastoma 1
Desmoplastic infantile ganglioglioma 2
Dysembryoplastic neuroepithelial tumor 6
Ganglioglioma 26
Anaplastic ganglioglioma 1
Centrol neurocytoma 3
Neurilemoma 1

Unspecified intracranial neoplasm (IIIf) 16 (6%)

a: Restricted to ICD-O-3 location C71, subclassified according to WHO histological subclassification, 2007; patients with 
neurofibromatosis and tuberous sclerosis were excluded.
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cross-complementing group 1, plays an important role 
in base excision repair pathway (BER) [35]. Chromatin 
assembly factor 1, subunit A (CHAF1A) is involved in 
DNA mismatch repair (MMR) during the correction of 
DNA replication errors [36]. XRCC4 encodes X-ray repair 
complementing defective repair in Chinese hamster cells 
4 that functions in the repair of DNA double-strand breaks 
(DSBs) produced by ionizing radiation and restriction 
enzymes [37].  

EME1 encodes essential meiotic structure-
specific endonuclease 1 which forms an endonuclease 
complex with methyl methanesulfonate-sensitive UV-
sensitive 81 protein (MUS81) and plays an important 
role in DNA repair and maintaining of genome integrity 
[38]. ATM encodes a protein kinase which is a member 
of phosphatidyl inositol 3-kinase-like kinase (PIKK) 
family. ATM is a key regulator of cell cycle checkpoint 
signaling pathways which responds to DNA strand 
breaks by inducing cell-cycle arrest and hence facilitates 
DNA repair [39]. GLTSCR1 stands for glioma tumor 
suppressor candidate region 1 and GLTSCR1 rs1035938 
polymorphism alters a CpG site within the 5′ CpG island 
of the gene. This germ-line alteration might affect the 
transcription of GLTSCR1 and other candi-date genes in 
the region [40].

The present study was conducted based on the 
largest series of pediatric brain tumor cases to date 
with the purpose to investigate the association between 
genetic polymorphisms along with four main pathways 

hypothesized to be involved in brain tumorigenesis 
and PBT risk. Although investigating the effect of 
environmental risk factors was not the aim of our study, 
the fact that we did not take into consideration the possible 
gene-environment interactions is a limitation of this work.  
Moreover, due to shortage of large enough pediatric 
patient materials with access to DNA samples, we were 
not able to replicate our findings. Therefore, additional 
studies are necessary to validate these results, explore the 
mechanisms through which these genetic polymorphisms 
influence cancer susceptibility, and to investigate gene-
environment interactions underling risk of PBTs. 

Since this study describes the association between 
genetic variations and risk of pediatric brain tumors, it 
provides an important starting point for understanding the 
mechanisms behind the PBT etiology that in turn might 
lead to identifying clinically meaningful genetic risk and 
protective factors and eventually cancer prevention and 
treatment. 

In conclusion, the present study indicates that 
while the minor alleles of polymorphisms in ERCC1 may 
increase the risk of PBTs, the minor alleles of SNPs in 
EGFR are associated with decreased susceptibility to 
these tumors. Furthermore, polymorphisms in CHAF1A 
and XRCC1 are associated with the risk of astrocytoma, 
whereas SNPs in EME1, ATM, GLTSCR1, and XRCC4 
are associated with susceptibility to non-astrocytoma 
subtypes. Therefore, genetic polymorphisms in cell cycle 
and DNA repair pathways associated with susceptibility 

table 2: summary results for snPs associated with pediatric brain tumors
snP chr. Gene Pathway location 

(bp)
Minor
allele

MAFa in 
cases

MAFa in 
controls Model orb 95% cI P cHIsQ Pinterc

rs730437 7 EGFR Cell cycle 55215018 A 0.44 0.51 Dominant 0.59 0.42–0.83 0.002 0.435

Recessive 0.79 0.56–1.15 0.23

Additive 0.75 0.60–0.93 0.009

Allelic 0.016 5.77

rs11506105 7 EGFR Cell cycle 55220177 A 0.39 0.45 Dominant 0.71 0.51–0.98 0.036 0.285

Recessive 0.87 0.59–1.28 0.477

Additive 0.82 0.66–1.02 0.079

Allelic 0.099 2.73

rs3212986 19 ERCC1 DNA 
Repair 45912736 A 0.27 0.21 Dominant 1.53 1.11–2.09 0.009 0.311

Recessive 1.14 0.59–2.19 0.699

Additive 1.34 1.04–1.73 0.023

Allelic 0.029 4.78

a: MAF=Minor Allele Frequency          b: OR adjusted for age, sex, and country         c: P value for interactions between 
SNPs and demographic variables including age, sex and country.
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to adult brain tumors seem also to be associated with PBT 
risk suggesting that pediatric and adult brain tumors might 
share similar etiological pathways. 

MAterIAls And MetHods

study subjects and procedures

This population-based case-control study is based 
on the Cefalo study, a large international study of brain 
tumors in children and adolescents conducted in Sweden, 
Denmark, Norway, and Switzerland. Details of the study 
methods have been described previously [41]. Briefly, 
all children aged 7–19 years during the period between 
1 April 2004 and 31 August 2008, diagnosed with a 
primary intracranial brain tumor defined according to the 
International Classification of Childhood Cancer, third 

edition (ICCC-3), group III [42], restricted to ICD-O-3 
location C71, were considered as case subjects. Cases were 
subclassified according to the fourth edition of the World 
Health Organization (WHO) classification of tumors 
of the central nervous system [43]. Participants with 
neurofibromatosis or tuberous sclerosis were excluded 
from analyses. Medulloblastoma cases were excluded here 
since they will be included in a separate study. Controls 
were randomly selected from the population registers 
and matched to the cases by age, sex, and geographic 
region. A total of 352 (82%) cases and 646 (71%) controls 
participated in the interviews. The study was approved by 
the National data protection boards and ethical committees 
in all participating countries, and written informed consent 
was obtained from all participants and/or their parents.

Saliva collection and DNA extraction were performed 
using the Oragene self-collection kit (DNA Genotek, Ottawa, 

table 3: summary results for snPs associated with astrocytoma subtype
snP chr. Gene Pathway location 

(bp)
Minor 
allele

MAFa in 
cases

MAFa in 
controls Model orb 95% cI P cHIsQ

rs730437 7 EGFR Cell cycle 55215018 A 0.44 0.51 Dominant 0.60 0.39–0.91 0.018

Recessive 0.84 0.54–1.33 0.462

Additive 0.77 0.59–1.01 0.058

Allelic 0.064 3.42

rs3212986 19 ERCC1 DNA Repair 45912736 A 0.29 0.21 Dominant 1.87 1.26–2.76 0.002

Recessive 0.95 0.40–2.25 0.914

Additive 1.49 1.09–2.04 0.011

Allelic 0.012 6.36

rs243341 19 CHAF1A DNA Repair 4405106 C 0.23 0.29 Dominant 0.66 0.45–0.98 0.040

Recessive 0.62 0.28–1.35 0.228

Additive 0.71 0.52–0.98 0.036

Allelic 0.033 4.57

rs2992 19 CHAF1A DNA Repair 4443046 C 0.23 0.29 Dominant 0.67 0.45–0.99 0.049

Recessive 0.64 0.29–1.39 0.262

Additive 0.72 0.53–0.99 0.046

Allelic 0.042 4.13

rs25487 19 XRCC1 DNA Repair 44055726 T 0.30 0.36 Dominant 0.66 0.44–0.97 0.033

Recessive 0.87 0.48–1.59 0.652

Additive 0.77 0.57–1.03 0.076

Allelic 0.077 3.13

a: MAF=Minor Allele Frequency          b: OR adjusted for age, sex, and country.
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ON, Canada) and the DNA yield was quantitated using 
PicoGreen (Invitrogen, Carlsbad, CA, USA), according 
to the standard protocols. This study, in total, included 
saliva DNA of 245 cases and 489 controls. Distribution of 

diagnostic subtypes among cases were 134 astrocytoma, 19 
ependymoma, 7 intracranial embryonal tumors, 20 other 
gliomas, 49 other specified intracranial neoplasms, and 16 
with unspecified intracranial neoplasms (Table 1).

table 4: summary results for snPs associated with non-astrocytoma subtype
snP chr. Gene Pathway location 

(bp)
Minor 
allele

MAFa in 
cases

MAFa in 
controls Model orb 95% cI P cHIsQ

rs730437 7 EGFR Cell cycle 55215018 A 0.44 0.51 Dominant 0.56 0.36–0.89 0.014

Recessive 0.75 0.46–1.25 0.271

Additive 0.72 0.53–0.97 0.030

Allelic 0.060 3.54

rs9642393 7 EGFR Cell cycle 55245647 C 0.3 0.26 Dominant 1.07 0.70–1.63 0.754

Recessive 2.21 1.13–4.35 0.021

Additive 1.23 0.89–1.69 0.214

Allelic 0.227 1.46

rs12450550 17 EME1 DNA Repair 48456193 C 0.38 0.28 Dominant 1.28 0.84–1.95 0.257

Recessive 2.48 1.42–4.33 0.001

Additive 1.42 1.06–1.91 0.019

Allelic 0.004 8.39

rs170548 11 ATM DNA Repair 108234836 C 0.36 0.31 Dominant 1.57 1.02–2.42 0.041

Recessive 0.98 0.49–1.92 0.947

Additive 1.27 0.93–1.72 0.135

Allelic 0.096 2.78

rs1035938 19 GLTSCR1 DNA Repair 48183771 T 0.29 0.24 Dominant 1.15 0.75–1.76 0.513

Recessive 2.14 1.09–4.19 0.027

Additive 1.27 0.92–1.74 0.145

Allelic 0.085 2.96

rs7721416 5 XRCC4 DNA Repair 82434993 A 0.41 0.47 Dominant 0.85 0.54–1.35 0.494

Recessive 0.51 0.27–0.94 0.032

Additive 0.76 0.56–1.04 0.089

Allelic 0.083 2.99

rs2662242 5 XRCC4 DNA Repair 82484885 C 0.42 0.48 Dominant 0.92 0.57–1.47 0.720

Recessive 0.49 0.26–0.91 0.024

Additive 0.78 0.57–1.06 0.114

Allelic 0.104 2.65

a: MAF=Minor Allele Frequency          b: OR adjusted for age, sex, and country.
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selection of candidate snPs and genotyping

The PubMed database was searched (up to 
December 2012) using combinations of the following 
terms: ‘brain tumor’, ‘single nucleotide polymorphism’, 
‘association’, ‘gene’, ‘risk’, ‘case control’, ‘susceptibility’, 
and ‘polymorphism’ to identify all the published peer-
reviewed candidate gene-association studies of brain 
tumors. All the statistically significant SNPs reported by 
childhood brain tumor genetic association studies [11–13] 
as well as the SNPs reported by at least two candidate 
gene-association studies as being statistically associated 
with the risk of adult brain tumors [3–9, 44–49] were 
selected for genotyping.

Of 68 selected SNPs, 63 SNPs were satisfactorily 
genotyped (success rate ≥ 80%). Genotyping was 
performed at the Mutation Analysis core Facility (MAF), 
Clinical Research Centre, Huddinge University Hospital, 
Stockholm, Sweden, with staff blinded to sample status, 
using the Sequenom iPlex Gold platform with matrix-
assisted laser desorption/ionization-time-of-flight 
(MALDI-TOF) mass spectrometry. The average success 
rate was 97% and the concordance rate for duplicate 
genotyping was 100%.

statistical analyses

The χ2 goodness-of-fit test was used to examine the 
consistency of allele frequencies with Hardy-Weinberg 
equilibrium (HWE) among the controls and p < 0.001 
was considered statistically significant. Odds ratios 
(ORs) and corresponding 95% confidence intervals (CIs) 
were calculated using unconditional logistic regression 
modelling to evaluate the association between each SNP 
and the risk of PBT based on the Cochran–Armitage trend 
test of additivity (trend) as well as dominant (DOM) and 
recessive (REC) models, with adjustment for age, sex, 
and country. We applied the χ2 test to compare the allelic 
frequencies of the genotyped SNPs between cases and 
controls as well as the Wald test to evaluate the significance 
of interactions between SNPs and demographic variables 
including age, sex and country. SNP-SNP interactions 
were investigated for pairwise combinations of all the 

SNPs involved in the same pathway and p < 0.001 was set 
as the significance level of interaction analyses. Stratified 
analyses were performed by astrocytoma alone and the 
other tumor types combined (including ependymoma, 
intracranial embryonal tumors (except medulloblastoma), 
other gliomas, other specified intracranial neoplasms, and 
unspecified intracranial neoplasm); in order to increase the 
statistical power. To measure the linkage disequilibrium 
(LD) between the genotyped SNPs, D´ was calculated. 
Haploblocks were defined based on the default LD block 
parameters in Haploview v4.2.  Haplotype analyses were 
performed for the haplotype blocks harboring the SNPs 
that were found to be associated with PBTs. Haplotypes 
with a frequency > 1% were considered in the blocks 
with different haplotype distribution between cases and 
controls (p < 0.1). Although selection of SNPs for the 
analyses was based on a priori knowledge from candidate 
gene-association studies on adults, the possibility of 
false-positive findings was considered by providing the 
reference p value for an experiment-wide significance with 
Bonferroni correction (0.0002 for an experiment-wide 
significance level of 0.05, and 0.0004 for a significance 
level of 0.10). The analyses were carried out using PLINK 
v1.07 [50] and SAS statistical software version 9.3 (SAS 
Institute, Inc., Cary, NC, USA).
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table 5: Haplotype analysis of snPs in EGFR
snPs Haplotype Frequency ora 95% cI P

EGFR: rs730437, rs11506105, rs4947986, rs3752651 AAAC 0.21 0.92 0.69–1.23 0.569
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CGGT 0.51 1.31 1.05–1.64 0.017

a: Odds ratio for haplotype compared with all other haplotypes adjusted for age, sex, and country.
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