54 research outputs found

    New Insights to Characterize Paint Varnishes and to Study Water in Paintings by Nuclear Magnetic Resonance Spectroscopy (NMR)

    Get PDF
    Paintings are complex multi-layered systems made of organic and inorganic materials. Several factors can affect the degradation of paintings, such as environmental conditions, past restoration works and, finally, the type of painting technique and the art materials used over the centuries. The chemical–physical characterization of paintings is a constant challenge that requires research into and the development of novel analytical methodologies and processes. In recent years, solvents and water-related issues in paintings are attracting more attention, and several studies have been focused on analyzing the interaction between water molecules and the constitutive materials. In this study, recent applications applying different NMR methodologies were shown, highlighting the weakness and the strength of the techniques in analyzing paintings. In particular, the study of water and its diffusive interactions within wall and oil paintings was performed to prove how the portable NMR can be used directly in museums for planning restoration work and to monitor the degradation processes. Furthermore, some preliminary results on the analysis of varnishes and binders, such us linseed oil, shellac, sandarac and colophony resins, were obtained by 1H HR-MAS NMR spectroscopy, highlighting the weakness and strengths of this technique in the field of conservation science

    Unilateral NMR: a Noninvasive Tool for Monitoring In Situ the Effectiveness of Intervention to Reduce the Capillary Raise of Water in an Ancient Deteriorated Wall Painting

    Get PDF
    Portable unilateral NMR was used to quantitatively map in a fully noninvasive way the moisture distribution in an ancient deteriorated wall painting before and after an intervention to reduce the capillary raise of water through the wall. Maps obtained at a depth of 0.5 cm clearly showed the path of the capillary raise and indicated that, after the intervention, the moisture level was reduced. Maps obtained by measuring the first layers of the wall painting were affected by the critical environmental conditions of the second hypogeous level of St. Clement Basilica, Rome, and by the presence of salts efflorescence and encrustations on the surface of the wall painting. The morphology and the elemental composition of salts investigated by SEM-EDS indicated that efflorescences and encrustations were mostly constituted of gypsum and calcite. The presence of these salts is explained with the presence of high concentration of carbon dioxide and sulphur-rich particles due to pollution which, along with the high-moisture level and the extremely feeble air circulation, cause recarbonation and sulphation processes on the plaster surface

    Moisture Damage in Ancient Masonry: A Multidisciplinary Approach for In Situ Diagnostics

    Get PDF
    San Nicola in Carcere, one of the minor basilicas in the historical center of Rome, was the location of a wide investigation campaign of the water-related deterioration causes, present in the lower sector of the apse and adjacent pillars, affected by water infiltrations, mould and salt efflorescence. The results obtained identify the presence of water content and related effects mainly on the sides of the apsidal wall. This work focuses on the use of five Non-Destructive Techniques (NDT) and intends to show the gains obtained by integrating widely interdisciplinary methods, namely the Infrared Thermography (IRT), the Unilateral Nuclear Magnetic Resonance (Unilateral NMR), the Acoustic Tomography (AT), the Acoustic Imaging (AI) and the Laser-Induced Fluorescence (LIF). All the techniques contribute to the rapid, non-invasive and early identification of the moisture distribution, while some of them (LIF and AI) also address the determination of some moisture effects. The integrated use of different techniques helps to take the multidisciplinary point of view necessary to formulate an effective restoration intervention based on a sound scientific rationale; nonetheless, it allows to experiment a holistic approach, verifying the potential of a wide range of NDTs available within the context of a restoration yard

    Cyanobacteria as indicators of water quality in Campania coasts, Italy: a monitoring strategy combining remote/proximal sensing andin situdata

    Get PDF
    Cyanobacterial blooms (CBs) are generally triggered by eutrophic conditions due to anthropogenic nutrient inputs to local waters (wastewater or contaminated waters). During the bloom, some species produce toxic secondary metabolites (cyanotoxins) that are dangerous for humans and animals. Here, a multidisciplinary strategy for an early detection and constant monitoring is proposed. This strategy combines remote/proximal sensing technology with analytical/biotechnological analyses. To demonstrate the applicability of this strategy, four anthropogenically-impacted sites were selected along the Campania coast of southwestern Italy, in the so called 'Land of Fires'. The sites were observed using satellite and aircraft images during summer, 2015. Algal community composition was determined using spectrophotometric analysis for the detection of the cyanobacterial pigment phycocyanin (PC). Complementary metagenomic analysis revealed the taxonomic presence of cyanobacteria belonging to genera associated with strong eutrophic conditions. Key elements of this strategy are the combination and integration of applying different methodological approaches such as the parallel and combined use of satellite, aerial and in-situ data, the simplified multispectral image indexing and classification for a truly efficient method in detecting early blooms of cyanobacteria. The effectiveness of the strategy has been validated also by the specific taxa of cyanobacteria found in the examined areas that confirm the assumption that cyanobacterial blooms may serve as useful bioindicators of degraded water quality in coastal ecosystems. To our knowledge this is the first time that the presence of cyanobacteria has been observed in water bodies along the Campania coast

    DECLINE OF PREVALENCE OF RESISTANCE ASSOCIATED SUBSTITUTIONS TO NS3 AND NS5A INHIBITORS AT DAA- FAILURE IN HEPATITIS C VIRUS IN ITALY OVER THE YEARS 2015 TO 2018

    Get PDF
    Background: A minority of patients fails to eliminate HCV and resistance-associated substitutions (RASs) are commonly detected at failure of interferon-free DAA regimens . Methods: Within the Italian network VIRONET-C, the prevalence of NS3/NS5A/NS5B RASs was retrospectively evaluated in patients who failed an EASL recommended DAA-regimen in 2015-2018 . The geno2pheno system and Sorbo MC et al. Drug Resistance Updates 2018 were used to infer HCV- genotype/subtype and predict drug resistance . The changes in prevalence of RASs over time were evaluated by chi-square test for trend, predictors of RASs at failure were analysed by logistic regression . Results: We included 386 HCV infected patients: 75% males, median age was 56 years (IQR 52-61), metavir fibrosis stage F4 in 76%; 106 (28%) were treatment- experienced: 91 (86%) with IFN-based treatments, 26 (25%) with DAAs. Patients with HIV and HBV coinfection were 10% (33/317) and 8% (6/72), respectively. HCV genotype was 1b in 122 pts (32%), 3 in 109 (28%), 1a in 97 (25%), 4 in 37 (10%), 2 in 21 (5%). DAA regimens were: LDV/SOF in 115 (30%), DCV/SOF in 103 (27%), 3D in 83 (21%), EBR/GRZ in 32 (8%), VEL/SOF in 29 (7%), GLE/PIB in 18 (5%) and 2D in 6 (2%); ribavirin was administered in 123 (32%) . The NS5A fasta-sequence was available for all patients, NS5B for 361 (94%), NS3 for 365 (95%) . According to the DAA failed the prevalence of any RASs was 90%, namely 80/135 (59%) in NS3, 313/359 (87%) in NS5A, 114/286 (40%) in NS5B . The prevalence of any RASs significantly declined from 2015 to 2018 (93% vs 70%, p=0.004): NS5A RASs from 90% to 72% (p=0 .29), NS3 RASs from 74% to 18% (p<0 .001), while NS5B RASs remained stable . Independent predictors of any RASs included advanced fibrosis (AOR 6.1, CI 95% 1.8-20.3, p=0 .004) and genotype (G2 vs G1a AOR 0 .03, CI 95% 0 .002- 0 .31, p=0 .004; G3 vs G1a AOR 0 .08, CI 95% 0 .01-0 .62, p=0 .02; G4 vs G1a AOR 0 .05, CI 95% 0 .006-0 .46, p=0 .008), after adjusting for age, previous HCV treatment and year of genotype . Notably, full activity was predicted for GLE/PIB in 75% of cases and for at least two components of VEL/SOF/VOX in 53% of cases, no case with full-resistance to either regimen was found . Conclusion: Despite decreasing prevalence over the years, RASs remain common at virological failure of DAA treatment, particularly in patients with the highest grade of liver fibrosis. The identification of RASs after failure could play a crucial role in optimizing retreatment strategies

    Practice patterns and 90-day treatment-related morbidity in early-stage cervical cancer

    Get PDF
    To evaluate the impact of the Laparoscopic Approach to Cervical Cancer (LACC) Trial on patterns of care and surgery-related morbidity in early-stage cervical cancer

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    Calibration of the CMS hadron calorimeters using proton-proton collision data at root s=13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of theCMSetector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities vertical bar eta vertical bar ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.Peer reviewe

    A autoridade, o desejo e a alquimia da política: linguagem e poder na constituição do papado medieval (1060-1120)

    Full text link

    New Insights to Characterize Paint Varnishes and to Study Water in Paintings by Nuclear Magnetic Resonance Spectroscopy (NMR)

    No full text
    Paintings are complex multi-layered systems made of organic and inorganic materials. Several factors can affect the degradation of paintings, such as environmental conditions, past restoration works and, finally, the type of painting technique and the art materials used over the centuries. The chemical–physical characterization of paintings is a constant challenge that requires research into and the development of novel analytical methodologies and processes. In recent years, solvents and water-related issues in paintings are attracting more attention, and several studies have been focused on analyzing the interaction between water molecules and the constitutive materials. In this study, recent applications applying different NMR methodologies were shown, highlighting the weakness and the strength of the techniques in analyzing paintings. In particular, the study of water and its diffusive interactions within wall and oil paintings was performed to prove how the portable NMR can be used directly in museums for planning restoration work and to monitor the degradation processes. Furthermore, some preliminary results on the analysis of varnishes and binders, such us linseed oil, shellac, sandarac and colophony resins, were obtained by 1H HR-MAS NMR spectroscopy, highlighting the weakness and strengths of this technique in the field of conservation science
    • 

    corecore