1,903 research outputs found

    String order and hidden topological symmetry in the SO(2n+1) symmetric matrix product states

    Full text link
    We have introduced a class of exactly soluble Hamiltonian with either SO(2n+1) or SU(2) symmetry, whose ground states are the SO(2n+1) symmetric matrix product states. The hidden topological order in these states can be fully identified and characterized by a set of nonlocal string order parameters. The Hamiltonian possesses a hidden (Z2×Z2)n(Z_{2}\times Z_{2})^{n} topological symmetry. The breaking of this hidden symmetry leads to 4n4^{n} degenerate ground states with disentangled edge states in an open chain system. Such matrix product states can be regarded as cluster states, applicable to measurement-based quantum computation.Comment: 5 pages, 1 figur

    Topological Color Codes and Two-Body Quantum Lattice Hamiltonians

    Get PDF
    Topological color codes are among the stabilizer codes with remarkable properties from quantum information perspective. In this paper we construct a four-valent lattice, the so called ruby lattice, governed by a 2-body Hamiltonian. In a particular regime of coupling constants, degenerate perturbation theory implies that the low energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. The gauge symmetry Z2×Z2\mathbf{Z}_{2}\times\mathbf{Z}_{2} of color code could already be realized by identifying three distinct plaquette operators on the lattice. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other giving rise to exact topological degeneracy of the model. Connection to 2-colexes can be established at the non-perturbative level. The particular structure of the 2-body Hamiltonian provides a fruitful interpretation in terms of mapping to bosons coupled to effective spins. We show that high energy excitations of the model have fermionic statistics. They form three families of high energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. Also, we use Jordan-Wigner transformation in order to test the integrability of the model via introducing of Majorana fermions. The four-valent structure of the lattice prevents to reduce the fermionized Hamiltonian into a quadratic form due to interacting gauge fields. We also propose another construction for 2-body Hamiltonian based on the connection between color codes and cluster states. We discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Biochar composites: Emerging trends, field successes, and sustainability implications

    Get PDF

    Disease-Aging Network Reveals Significant Roles of Aging Genes in Connecting Genetic Diseases

    Get PDF
    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system–based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.
    corecore