24 research outputs found

    phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism

    Get PDF
    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm

    Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development.

    Get PDF
    Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield

    Polymorphic glutathione S-transferase subunit 3 of rat liver exhibits different susceptibilities to carbon tetrachloride: differences in their interactions with heat-shock protein 90.

    No full text
    Rat glutathione S-transferase (GST) subunit 3 gene has polymorphism, one type encoding Asn(198)-Cys(199) (NC type) and another encoding Lys(198)-Ser(199) (KS type). To examine whether the two types of GST 3-3 exhibit different susceptibilities to oxidative stress in vivo, rats were administered with CCl(4), a hepatotoxin causing severe oxidative stress, and its effect on liver GST 3-3 was compared. Decrease in GST activities in liver due to CCl(4) administration was more evident in NC type rats than in KS type rats, and most GST activities of KS type rats were confined to S-hexylglutathione-Sepharose, whereas those of NC type rats were not. Decreases in GST subunits 1 and 3 were more marked in NC type rats and glutathiolated NC type GST 3-3 was also detected. These results indicated that KS and NC type GST 3-3 of rat livers exhibited different susceptibilities to CCl(4) in vivo. A protein consisting of a subunit with molecular mass of 90 kDa was shown to bind to KS type GST 3-3 but not to NC type. This protein was identified as heat-shock protein (HSP) 90beta by N-terminal amino acid sequencing and immunoblotting. A specific HSP90 inhibitor geldanamycin released their binding. There was no difference in the binding of apoptosis signal-regulating kinase 1 to GST 3-3 between NC and KS type rats. These findings suggest that HSP90 interacts with KS type GST 3-3 and thereby protects it from inactivation due to CCl(4)

    Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex

    No full text
    Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localised the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non-invasive approach where PHOT1-GFP (P1-GFP) expression was targeted to the hypocotyl apex of the phot-deficient mutant using the promoters of CUP-SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1-GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1-GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 ÎĽmol m-2 s-1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1-GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de-phosphorylation showed that CUC3::P1-GFP and ANT::P1-GFP mis-express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1-mediated NPH3 de-phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl
    corecore