10 research outputs found

    ICES Viewpoint background document: Impact from exhaust gas cleaning systems (scrubbers) on the marine environment (Ad hoc).

    Get PDF
    Shipping is a diverse industry that connects the world. The distribution and intensity of commercial shipping is increasing and there is a growing need to assess and mitigate the impacts of vessel activities on the marine environment. New global standards on sulphur content in marine fuels have led to an increasing number of ships installing exhaust gas cleaning systems (EGCS), also known as scrubbers, to reduce their emissions of sulphur oxides to the atmosphere. Ships equipped with a scrubber can continue to use heavy fuel oil, and the process results in discharges of large volumes of acidified water that contain a mix of contaminants, such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), oil residues, and nitrates. For the most common type of scrubber, open loop, this polluted water is directly discharged back to the sea, trading reductions in air pollution for increased water pollution. The scrubber discharge mixture has demonstrated toxic effects in laboratory studies, causing immediate mortality in plankton and exhibiting negative synergistic effects. The substances found in scrubber discharge water are likely to have further impacts in the marine environment through bioaccumulation, acidification and eutrophication. The impacts of scrubber discharge water can be completely avoided through the use of alternative fuels, such as distilled low sulphur fuels. Distilled fuels have the added benefit that they remove the threat of heavy fuel oil spills from shipping activities. If the use of alternative fuels is not adopted, and scrubbers continue to be considered an equivalent method to meet the sulphur emissions limits, then there is urgent need for:1) significant investment in technological advances and port reception facilities to allow zero discharge closed loop scrubber systems;2) improved protocols and standards for measuring, monitoring and reporting on scrubber discharge water acidity and pollutants;3) evidence-based regulations on scrubber water discharge limits that consider the full suite of contaminants

    GEO-6 assessment for the pan-European region

    No full text
    Through this assessment, the authors and the United Nations Environment Programme (UNEP) secretariat are providing an objective evaluation and analysis of the pan-European environment designed to support environmental decision-making at multiple scales. In this assessment, the judgement of experts is applied to existing knowledge to provide scientifically credible answers to policy-relevant questions. These questions include, but are not limited to the following:• What is happening to the environment in the pan-European region and why?• What are the consequences for the environment and the human population in the pan-European region?• What is being done and how effective is it?• What are the prospects for the environment in the future?• What actions could be taken to achieve a more sustainable future?<br/

    Les PCB dans le Rhône

    No full text
    National audienc

    Bioturbation at the water-sediment interface of the Thau Lagoon: impact of shellfish farming

    No full text
    Quantifying of sediment reworking processes provides new insights into benthic ecosystem functioning of the Thau lagoon, an important European shellfish farming area. In order to evaluate bioturbation rates of surface sediments, profiles of 7Be (half-life: 53 days) and 234Th (half-life: 24.1 days) were measured in cores collected since December 2001 to December 2006. Several sites were selected to sample the diversity of the Thau lagoon: C4, T10, and T11 in the middle of the lagoon, C5, T7 and T8 nearby oyster farming, T2 and T4 in the western edge, T12 in the eastern part closed to industry. 234Th in excess (234Thxs; i.e. supplied to sediment by settling particles) and 7Be both show seasonal variations in activities and in penetration within sediment. Taking into account the moderate sedimentation rates of the Thau lagoon, sites (0.1–0.4 cm per year), the penetration of both short-lived radionuclides to variable depths, from 1 up to 8 cm, indicates efficient biological mixing of upper sediments. Bioturbation rates (Db) to the distribution of excess 234Th (234Pb-Db) and of 7Be (7Be-Db) range between 1 and 35 cm2 y−1, depending on site and season. Surface sediment mixing of the Thau lagoon is primarily controlled by the quality of particle input, i.e. the food supply to the benthic fauna, mainly governed by the hydrological and seasonal conditions. But locally shellfish production is a key parameter that influences bioturbation through biodeposition

    Contamination of the Bay of Biscay by polycyclic aromatic hydrocarbons (PAHs) following the T/V “

    No full text
    An investigation was carried out into the PAH chemical contamination resulting from the “Erika” tanker fuel spillage of December 1999 along the French coast of the Bay of Biscay. A qualitative and quantitative assessment was conducted of this contamination in water, suspended particulate matter, sediments, and in intertidal molluscs. The chemical composition of PAHs in pre-spill and post-spill samples was determined and used to distinguish the “Erika's” fuel as the source of PAHs in the coastal environment of the Bay of Biscay. Changes in concentrations of PAHs were also assessed. The GC-MS analysis made it possible to identify and quantify parent unsubstituted PAHs, alkyl-substituted PAHs (C-PAH) and sulfur heterocycle unsubstituted and alkyl substituted compounds (SPAH and C-SPAH). The results of this study demonstrated that heavily oil-contaminated shorelines, including beaches, rocky coasts as well as sandy sediments apparently became reservoirs of spilled fuel and these continued to contaminate seawater, suspended particulate matter and mussels with PAHs. These conclusions were borne out by the following observations: (1) the pattern changes in PAH composition after the “Erika” oil spill were consistent in all contaminated compartments (water, suspended particulate matter SPM, intertidal sediments and molluscs), (2) the compositional patterns of PAHs after the “Erika” oil spill in contaminated water, SPM, intertidal sediments and molluscs constantly included alkyl-substituted phenanthrenes, pyrenes, chrysenes and sulfur heterocycle compounds in higher relative abundances than those in the pre-spill samples of these compartments, (3) the relative abundances of different suites of PAHs at contaminated sites were similar to those of weathered “Erika” fuel, (4) consistent and visible temporal decline in concentrations for water, SPM and molluscs, (5) the geographical contiguity of the stations with high concentrations of PAHs in molluscs matched the extent of the shoreline contamination by the spilled fuel. The increase in the contamination levels before and after the spill, together with the significant change in the pattern of PAH composition provide evidence of the intense and long-term chemical contamination of the “Erika's” fuel and of the damage to natural marine resources resulting from such contamination by toxic oil components

    Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean

    No full text
    International audienceThe semi-enclosed nature of the Mediterranean Sea, together with its smaller inertia due to the relative short residence time of its water masses, make it highly reactive to external forcings, in particular variations of water, energy and matter fluxes at the interfaces. This region, which has been identified as a “hotspot” for climate change, is therefore expected to experience environmental impacts that are considerably greater than those in many other places around the world. These natural pressures interact with the increasing demographic and economic developments occurring heterogeneously in the coastal zone, making the Mediterranean even more sensitive. This review paper aims to provide a review of the state of current functioning and responses of Mediterranean marine biogeochemical cycles and ecosystems with respect to key natural and anthropogenic drivers and to consider the ecosystems’ responses to likely changes in physical, chemical and socio-economical forcings induced by global change and by growing anthropogenic pressure at the regional scale. The current knowledge on and expected changes due to single forcing (hydrodynamics, solar radiation, temperature and acidification, chemical contaminants) and combined forcing (nutrient sources and stoichiometry, extreme events) affecting the biogeochemical fluxes and ecosystem functioning are explored. Expected changes in biodiversity resulting from the combined action of the different forcings are proposed. Finally, modeling capabilities and necessity for modeling are presented. A synthesis of our current knowledge of expected changes is proposed, highlighting relevant questions for the future of the Mediterranean ecosystems that are current research priorities for the scientific community. Finally, we discuss how these priorities can be approached by national and international multi-disciplinary research, which should be implemented on several levels, including observational studies and modeling at different temporal and spatial scales
    corecore