42 research outputs found

    Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression.

    Get PDF
    Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation

    The efficacy of antihypertensiye drugs in chronic intermittent hypoxia conditions

    Get PDF
    The authors would like to thank the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) and CEDOC (Chronic Diseases Research Centre, Lisbon, Portugal). Lucilia N. Diogo is supported by an FCT fellowship (SFRH/BD/48335/2008; PTDC/SAU-TOX/112264/2009).Sleep apnea/hypopnea disorders include centrally originated diseases and obstructive sleep apnea (OSA). This last condition is renowned as a frequent secondary cause of hypertension (HT). The mechanisms involved in the pathogenesis of HT can be summarized in relation to two main pathways: sympathetic nervous system stimulation mediated mainly by activation of carotid body (CB) chemoreflexes and/or asphyxia, and, by no means the least important, the systemic effects of chronic intermittent hypoxia (CIH). The use of animal models has revealed that CIH is the critical stimulus underlying sympathetic activity and hypertension, and that this effect requires the presence of functional arterial chemoreceptors, which are hyperactive in CIH. These models of CIH mimic the HT observed in humans and allow the study of CIH independently without the mechanical obstruction component. The effect of continuous positive airway pressure (CRAP), the gold standard treatment for OSA patients, to reduce blood pressure seems to be modest and concomitant antihypertensive therapy is still required. We focus this review on the efficacy of pharmacological interventions to revert HT associated with CIH conditions in both animal models and humans. First, we explore the experimental animal models, developed to mimic HT related to CIH, which have been used to investigate the effect of antihypertensive drugs (AHDs). Second, we review what is known about drug efficacy to reverse HT induced by CIH in animals. Moreover, findings in humans with OSA are cited to demonstrate the lack of strong evidence for the establishment of a first-line antihypertensive regimen for these patients. Indeed, specific therapeutic guidelines for the pharmacological treatment of HT in these patients are still lacking. Finally, we discuss the future perspectives concerning the non-pharmacological and pharmacological management of this particular type of HT.publishersversionpublishe

    Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney

    No full text
    We previously reported an enhanced tonic dilator impact of ATP-sensitive K+ channels in afferent arterioles of rats with streptozotocin (STZ)-induced diabetes. The present study explored the hypothesis that other types of K+ channel also contribute to afferent arteriolar dilation in STZ rats. The in vitro blood-perfused juxtamedullary nephron technique was utilized to quantify afferent arteriolar lumen diameter responses to K+ channel blockers: 0.1–3.0 mM 4-aminopyridine (4-AP; KV channels), 10–100 μM barium (KIR channels), 1–100 nM tertiapin-Q (TPQ; Kir1.1 and Kir3.x subfamilies of KIR channels), 100 nM apamin (SKCa channels), and 1 mM tetraethylammonium (TEA; BKCa channels). In kidneys from normal rats, 4-AP, TEA, and Ba2+ reduced afferent diameter by 23 ± 3, 8 ± 4, and 18 ± 2%, respectively, at the highest concentrations employed. Neither TPQ nor apamin significantly altered afferent diameter. In arterioles from STZ rats, a constrictor response to TPQ (22 ± 4% decrease in diameter) emerged, and the response to Ba2+ was exaggerated (28 ± 5% decrease in diameter). Responses to the other K+ channel blockers were similar to those observed in normal rats. Moreover, exposure to either TPQ or Ba2+ reversed the afferent arteriolar dilation characteristic of STZ rats. Acute surgical papillectomy did not alter the response to TPQ in arterioles from normal or STZ rats. We conclude that 1) KV, KIR, and BKCa channels tonically influence normal afferent arteriolar tone, 2) KIR channels (including Kir1.1 and/or Kir3.x) contribute to the afferent arteriolar dilation during diabetes, and 3) the dilator impact of Kir1.1/Kir3.x channels during diabetes is independent of solute delivery to the macula densa
    corecore