126 research outputs found

    A SNP transferability survey within the genus Vitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efforts to sequence the genomes of different organisms continue to increase. The DNA sequence is usually decoded for one individual and its application is for the whole species. The recent sequencing of the highly heterozygous <it>Vitis vinifera </it>L. cultivar Pinot Noir (clone ENTAV 115) genome gave rise to several thousand polymorphisms and offers a good model to study the transferability of its degree of polymorphism to other individuals of the same species and within the genus.</p> <p>Results</p> <p>This study was performed by genotyping 137 SNPs through the SNPlex™ Genotyping System (Applied Biosystems Inc.) and by comparing the SNPlex sequencing results across 35 (of the 137) regions from 69 grape accessions. A heterozygous state transferability of 31.5% across the unrelated cultivars of <it>V. vinifera</it>, of 18.8% across the wild forms of <it>V. vinifera</it>, of 2.3% among non-<it>vinifera Vitis </it>species, and of 0% with <it>Muscadinia rotundifolia </it>was found. In addition, mean allele frequencies were used to evaluate SNP informativeness and develop useful subsets of markers.</p> <p>Conclusion</p> <p>Using SNPlex application and corroboration from the sequencing analysis, the informativeness of SNP markers from the heterozygous grape cultivar Pinot Noir was validated in <it>V. vinifera </it>(including cultivars and wild forms), but had a limited application for non-<it>vinifera Vitis </it>species where a resequencing strategy may be preferred, knowing that homology at priming sites is sufficient. This work will allow future applications such as mapping and diversity studies, accession identification and genomic-research assisted breeding within <it>V. vinifera</it>.</p

    The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity

    Get PDF
    Background: The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. Results: Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. Conclusions: The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes

    A new genomic tool for walnut (Juglans regia L.): development and validation of the high‐density Axiom™ J. regia 700K SNP genotyping array

    Get PDF
    11openInternationalInternational coauthor/editorOver the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome‐wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools. Here, we present the development and validation of a high‐density 700K single nucleotide polymorphism (SNP) array in Persian walnut. Over 609K high‐quality SNPs have been thoroughly selected from a set of 9.6 m genome‐wide variants, previously identified from the high‐depth re‐sequencing of 27 founders of the Walnut Improvement Program (WIP) of University of California, Davis. To validate the effectiveness of the array, we genotyped a collection of 1284 walnut trees, including 1167 progeny of 48 WIP families and 26 walnut cultivars. More than half of the SNPs (55.7%) fell in the highest quality class of ‘Poly High Resolution’ (PHR) polymorphisms, which were used to assess the WIP pedigree integrity. We identified 151 new parent‐offspring relationships, all confirmed with the Mendelian inheritance test. In addition, we explored the genetic variability among cultivars of different origin, revealing how the varieties from Europe and California were differentiated from Asian accessions. Both the reconstruction of the WIP pedigree and population structure analysis confirmed the effectiveness of the Applied Biosystems™ Axiom™ J. regia 700K SNP array, which initiates a novel genomic and advanced phase in walnut genetics and breedingopenMarrano, A.; Martínez-García, P.J.; Bianco, L.; Sideli, G.M.; Di Pierro, E.A.; Leslie, C.A.; Stevens, K.A.; Crepeau, M.W.; Troggio, M.; Langley, C.H.; Neale, D.B.Marrano, A.; Martínez-García, P.J.; Bianco, L.; Sideli, G.M.; Di Pierro, E.A.; Leslie, C.A.; Stevens, K.A.; Crepeau, M.W.; Troggio, M.; Langley, C.H.; Neale, D.B

    Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    Get PDF
    Abstract Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.Apple genome research at FEM is supported by the research office of the Provincia autonoma di Trento. DJS and ELG acknowledge a grant from the East Malling Trust. Fragaria genomics at EMR is funded by the BBSRC. JMB is supported by a grant by Plant & Food Research's Excellence Programme. Apple genomics at Plant & Food Research is partially supported by the New Zealand Foundation for Research Science and Technology project C06X0812 "Exploiting Opportunities from Horticultural Genomics". Research conducted at IRTA was partly funded by the CONSOLIDER-INGENIO 2010 Program (CSD2007-00036) and project INIA-RTA2007-00063-00-00, both from the Spanish Ministry of Science and Innovation. RosCOS development at OSU/MSU was funded by the National Research Initiative Competitive Grant 2005-35300-15454 of USDA's National Institute of Food and Agriculture.Peer Reviewe

    Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm

    Get PDF
    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species

    Whole-Genome Analysis of Diversity and SNP-Major Gene Association in Peach Germplasm

    Get PDF
    Peach was domesticated in China more than four millennia ago and from there it spread world-wide. Since the middle of the last century, peach breeding programs have been very dynamic generating hundreds of new commercial varieties, however, in most cases such varieties derive from a limited collection of parental lines (founders). This is one reason for the observed low levels of variability of the commercial gene pool, implying that knowledge of the extent and distribution of genetic variability in peach is critical to allow the choice of adequate parents to confer enhanced productivity, adaptation and quality to improved varieties. With this aim we genotyped 1,580 peach accessions (including a few closely related Prunus species) maintained and phenotyped in five germplasm collections (four European and one Chinese) with the International Peach SNP Consortium 9K SNP peach array. The study of population structure revealed the subdivision of the panel in three main populations, one mainly made up of Occidental varieties from breeding programs (POP1OCB), one of Occidental landraces (POP2OCT) and the third of Oriental accessions (POP3OR). Analysis of linkage disequilibrium (LD) identified differential patterns of genome-wide LD blocks in each of the populations. Phenotypic data for seven monogenic traits were integrated in a genome-wide association study (GWAS). The significantly associated SNPs were always in the regions predicted by linkage analysis, forming haplotypes of markers. These diagnostic haplotypes could be used for marker-assisted selection (MAS) in modern breeding programs
    corecore