42 research outputs found

    Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering

    Full text link
    The dynamics of a physical gel, namely the Low Molecular Mass Organic Gelator {\textit Methyl-4,6-O-benzylidene-α\alpha -D-mannopyranoside (α\alpha-manno)} in water and toluene are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a timescale from a few ps to 1 ns, the number of solvent molecules that are immobilised by the rigid network formed by the gelators. We found that only few toluene molecules per gelator participate to the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic or ππ\pi-\pi interactions and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilised by the presence of the network. This study shows that neutron scattering can give valuable information about the behaviour of solvent confined in a molecular gel.Comment: Langmuir (2015

    Using solution state NMR spectroscopy to probe NMR invisible gelators

    Get PDF
    Supramolecular hydrogels are formed via the self-assembly of gelator molecules upon application of a suitable trigger. The exact nature of this self-assembly process has been widely investigated as a practical understanding is vital for the informed design of these materials. Solution-state NMR spectroscopy is an excellent non-invasive tool to follow the self-assembly of supramolecular hydrogels. However, in most cases the self-assembled aggregates are silent by conventional 1H NMR spectroscopy due to the low mobility of the constituent molecules, limiting NMR spectroscopy to following only the initial assembly step(s). Here, we present a new solution-state NMR spectroscopic method which allows the entire self-assembly process of a dipeptide gelator to be followed. This gelator forms transparent hydrogels by a multi-stage assembly process when the pH of an initially alkaline solution is lowered via the hydrolysis of glucono-δ-lactone (GdL). Changes in the charge, hydrophobicity and relative arrangement of the supramolecular aggregates can be followed throughout the assembly process by measuring the residual quadrupolar couplings (RQCs) of various molecular probes (here, 14NH4+ and isopropanol-d8), along with the NMR relaxation rates of 23Na+. The initially-formed aggregates comprise negatively charged fibrils which gradually lose their charge and become increasingly hydrophobic as the pH falls, eventually resulting in a macroscopic contraction of the hydrogel. We also demonstrate that the in situ measurement of pH by NMR spectroscopy is both convenient and accurate, representing a useful tool for the characterisation of self-assembly processes by NMR

    Probing the surface chemistry of self-assembled peptide hydrogels using solution-state NMR spectroscopy

    Get PDF
    The surface chemistry of self-assembled hydrogel fibres – their charge, hydrophobicity and ion-binding dynamics – is recognised to play an important role in determining how the gels develop as well as their suitability for different applications. However, to date there are no established methodologies for the study of this surface chemistry. Here, we demonstrate how solution-state NMR spectroscopy can be employed to measure the surface chemical properties of the fibres in a range of hydrogels formed from N-functionalised dipeptides, an effective and versatile class of gelator that has attracted much attention. By studying the interactions with the gel fibres of a diverse range of probe molecules and ions, we can simultaneously study a number of surface chemical properties of the NMR invisible fibres in an essentially non-invasive manner. Our results yield fresh insights into the materials. Most notably, gel fibres assembled using different tiggering methods bear differing amounts of negative charge as a result of a partial deprotonation of the carboxylic acid groups of the gelators. We also demonstrate how chemical shift imaging (CSI) techniques can be applied to follow the formation of hydrogels along chemical gradients. We apply CSI to study the binding of Ca2+ and subsequent gelation of peptide assemblies at alkaline pH. Using metal ion-binding molecules as probes, we are able to detect the presence of bound Ca2+ ions on the surface of the gel fibres. We briefly explore how knowledge of the surface chemical properties of hydrogels could be used to inform their practical application in fields such as drug delivery and environmental remediation

    Hydration of Hydroxypropylmethyl Cellulose: Effects of pH and Molecular Mass

    No full text
    Magnetic resonance imaging was used to study the diffusion of a water solution of hydrochloric acid (HCl) and sodium hydrochloride (NaOH) into hydroxypropylmethyl cellulose matrices. Polymer in the form of a cylinder was hydrated in a water solvent of pH = 2, 7, and 12 at 37ºC and monitored at equal intervals with a 300 MHz Bruker AVANCE. The spatially resolved spin-spin relaxations times and spin densities, along with a change in the dimension of the glass core of the polymer were determined for hydroxypropylmethyl cellulose tablets as a function of hydration times. The data showed the effects of the pH solvent and of the molecular mass of the polymer on the swelling process, spin-spin relaxation time, and diffusion of solvent molecules into hydroxypropylmethyl cellulose matrices. The time dependence of the diffusion front, effective T2\text{}_{2}, and proton-density ρ analysis clearly indicate a case II diffusion mechanism in the system composed of a water solution of hydrochloric acid (pH = 2) and hydroxypropylmethyl cellulose, whereas in the case of water solutions with pH = 7 and 12 the anomalous and case I diffusion are observed, respectively

    Dielectric Relaxation in Cellulose and its Derivatives

    No full text
    The relaxation processes in cellulose, methyl cellulose, hydroxypropyl cellulose, and hydroxypropylmethyl cellulose were studied by dielectric spectroscopy. The dielectric spectra for these polysaccharides were measured in the frequency range from 100 Hz to 1 MHz and in the temperature range from 100 to 450 K. The dielectric relaxation data for cellulose, methyl cellulose, hydroxypropylmethyl cellulose were described by Arrhenius and Eyring equations and interpreted as due to a local motion of chain segments via the glucosidic linkages, so-calledβ-relaxation. The same relaxation process was also determined for the hydroxypropyl cellulose polymer in the temperature range of 240-270 K. At higher temperature in hydroxypropyl cellulose another relaxation mechanism occurs due to the reorientation of the side chain built of a few hydroxypropylene groups. The activation parameters of the observed dielectric relaxation processes were determined

    NMR chemical shift and asymmetric dipolar tensors of water protons in sodium nitroprusside (SNP)

    No full text
    NMR spectra of the protons in single crystals of Na2Fe(CN)5NO·2H2O (SNP) were measured by FT NMR techniques between 200 and 350 K. The dipolar coupling tensors of the water protons in SNP, their asymmetry parameters and the orientations of the dipole—dipole (DD) tensors relative to the crystal axes were obtained at 200, 290, 305, 315 and 340 K. The proton—proton distance rHH and the angle HOH of the water molecules in SNP were found to be 1.53 Å and 106.5°, respectively. All 1H DD tensors are not axially symmetric. These results are interpreted in terms of librational motions of the H2O molecules in SNP in addition to the well-established flips. At 290 K the proton shielding tensor of the water molecules in SNP has been extracted directly from wide line spectra

    Gelation Process of Toluene-Based bis-Urea in Cyclohexane Studied with Magnetic Resonance Imaging

    No full text
    Magnetic resonance imaging was used for studies of the gelation and swelling processes of toluene-based bis-urea prepared in a form of cylindrical tablet and immersed in cyclohexane. The processes were investigated with the use of Bruker AVANCE (300 MHz) spectrometer equipped with a micro imaging probe head. The images were taken for cyclohexane protons within the bis-urea gel formed around the sample dry core at different intervals of the immersion. The mobility of the solvent molecules was estimated from the spatially resolved distribution of the spin-spin relaxation time T2\text{}_{2} and the spin densitiesρ, calculated on the basis of the images obtained. It was shown that the time-evolution of the thickness of the gel layer can be well described by the power equation with an exponent equal to 0.47 (±0.04), indicating the Fickian nature of the diffusion of cyclohexane molecules
    corecore