148 research outputs found

    Evidence of slope instability in the Southwestern Adriatic Margin

    No full text
    International audienceThe Southwestern Adriatic Margin (SAM) shows evidence of widespread failure events that generated slide scars up to 10 km wide and extensive slide deposits with run out distances greater than 50 km. Chirp-sonar profiles, side-scan sonar mosaics, multibeam bathymetry and sediment cores document that the entire slope area underwent repeated failures along a stretch of 150 km and that mass-transport deposits, covering an area of 3320 km2, are highly variable ranging from blocky slides to turbidites, and lay on the lower slope and in the basin. The SAM slope between 300?700 m is impacted by southward bottom currents shaping sediment drifts (partly affected by failure) and areas of dominant erosion of the seafloor. When slide deposits occur in areas swept by bottom currents their fresh appearence and their location at seafloor may give the misleading impression of a very young age. Seismic-stratigraphic correlation of these deposits to the basin floor, however, allow a more reliable age estimate through sediment coring of the post-slide unit. Multiple buried failed masses overlap each other in the lower slope and below the basin floor; the most widespread of these mass-transport deposits occurred during the MIS 2-glacial interval on a combined area of 2670 km2. Displacements affecting Holocene deposits suggest recent failure events during or after the last phases of the last post-glacial eustatic rise. Differences in sediment accumulation rates at the base or within the sediment drifts and presence of downlap surfaces along the slope and further in the basin may provide one or multiple potential weak layers above which widespread collapses take place. Neotectonic activity and seismicity, together with the presence of a steep slope, represent additional elements conducive to sediment instability and failure along the SAM. Evidence of large areas still prone to failure provides elements of tsunamogenic hazard

    Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea

    Get PDF
    Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystem

    Middle Pleistocene to Holocene activity of the Gondola Fault Zone (Southern Adriatic Foreland): deformation of a regional shear zone and seismotectonic implications

    Get PDF
    Recent seismicity in and around the Gargano Promontory, an uplifted portion of the Southern Adriatic Foreland domain, indicates active E–W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E–W-trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene–Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic–stratigraphic data, have led to the identification of fold growth and fault propagation in Middle–Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E–W branch of the Gondola Fault Zone. We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the Southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise–Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour

    Middle Pleistocene to Holocene activity of the Gondola Fault Zone (Southern Adriatic Foreland): deformation of a regional shear zone and seismotectonic implications

    Get PDF
    Recent seismicity in and around the Gargano Promontory, an uplifted portion of the southern Adriatic Foreland domain, indicates active E-W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E-W–trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene-Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic-stratigraphic data, have led to the identification of fold growth and fault propagation in Middle-Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E-W branch of the Gondola Fault Zone. We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise-Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour

    Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geochemistry and its linkage to catchment geology

    Get PDF
    The Po-Adriatic region offers an excellent case for reconstructing sediment provenance and transport pathways of a multi-sourced sediment-routing system. Through a comprehensive set of ~1,400 geochemical data, a model for provenance and sediment flux was built based on distinct compositional fingerprints of 53 fluvial systems and their comparison to coastal, shelf and deep-marine sediments. Geochemically unique catchment lithologies (mafic/ultramafic rocks, limestones and dolostones) were used as end-members to assess exclusive source-rock signatures. Following calibration with sedimentary facies, selected key elements and element ratios poorly sensitive to particle size (Ni/Cr, MgO, Ni/Al2O3, Cr/V, Ca/Al2O3 and Ce/V) were adopted as provenance indicators. The high-Ni and high-Cr source-rock signature of mafic/ultramafic rocks widely exposed in the Po River watershed and along the Albanian Dinarides contrasts markedly with the high-Ca (and locally high-Mg) geochemical composition of Eastern Alpine, Apennine, and Eastern Adriatic (Montenegro, Croatia, Slovenia) river catchments, which are, instead, carbonate-rich and virtually ophiolite-free. Relatively high Ce values from Apulian river samples serve as a key marker for a minor, but very distinct sediment provenance from southern Apennine alkaline volcanic rocks. Despite along-shore mixing and dilution with sediment sourced from other river catchments, the geochemical signature of Adriatic shelf muds primarily reflects composition of sediment eroded from the contiguous continental areas. Chromium-rich and nickel-rich detritus generated in mafic and ultramafic complexes of the Western Alps and conveyed through the Po River into the Adriatic Sea records a geochemical signal that can be traced downstream as long as 1000 km, from the Alpine zone of sediment production to the area of final deposition, offshore Apulia. While longitudinal dispersion linked to the general cyclonic, counter-clockwise Adriatic circulation is prevailing along the Western Adriatic Sea, conspicuous detrital input from transversal pathways to the deep sea is revealed across the Eastern Adriatic shelf using heavy metals as provenance tracers. Estimates of fluvial sediment loads and compositional fingerprinting of fluvial, coastal and shelf sediments indicate that previously neglected ophiolite-rich successions of Albania represent a major sediment-conveyor to the offshore sinks (Southern Adriatic Deep and Mid-Adriatic Deep) through significant cross-shore and NNW-directed sediment transport in the Eastern Adriatic Sea. A cut-off value of the Ni/Cr ratio targeted around 0.8 represents an effective tool for the differentiation in marine sediments of Ni-rich (serpentine-rich) ophiolite detritus of Albanian origin from mafic/ultramafic sources of Alpine affinity. High trace-metal contents found within the Adriatic deep basin are mostly of natural origin and only minimally reflect metal contamination

    Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation

    Get PDF
    This study was supported by Shell International Exploration and Production Inc. We thank the R/V URANIA crew for at sea assistance. This is the ISMAR contribution n. 1914. We thank Dr. L. Capotondi and Dr. L. Vigliotti for their constructive comments on the first draft of the manuscript. We also thank Dr. Daria Pasqual (University of Padova, Dept. of Geosciences) for her assistance in XRF analyses. We thank two anonymous reviewers and the Editor H. Bauch for their constructive comments. We also acknowledge Prof. Gerhard Schmiedl (Universität Hamburg) and Associate Prof. Syee Weldeab (Earth Science, UC Santa Barbara) for providing published data used in this study.Peer reviewedPostprin

    COVID-19 lockdowns reveal the resilience of Adriatic Sea fisheries to forced fishing effort reduction

    Get PDF
    The COVID-19 pandemic provides a major opportunity to study fishing effort dynamics and to assess the response of the industry to standard and remedial actions. Knowing a fishing fleet’s capacity to compensate for effort reduction (i.e., its resilience) allows differentiating governmental regulations by fleet, i.e., imposing stronger restrictions on the more resilient and weaker restrictions on the less resilient. In the present research, the response of the main fishing fleets of the Adriatic Sea to fishing hour reduction from 2015 to 2020 was measured. Fleet activity per gear type was inferred from monthly Automatic Identification System data. Pattern recognition techniques were applied to study the fishing effort trends and barycentres by gear. The beneficial effects of the lockdowns on Adriatic endangered, threatened and protected (ETP) species were also estimated. Finally, fleet effort series were examined through a stock assessment model to demonstrate that every Adriatic fishing fleet generally behaves like a stock subject to significant stress, which was particularly highlighted by the pandemic. Our findings lend support to the notion that the Adriatic fleets can be compared to predators with medium-high resilience and a generally strong impact on ETP species

    New deep-water cnidarian sites in the southern Adriatic Sea

    Get PDF
    Recent ROV (Remotely Operated Vehicle) exploration and bottom sampling in the southern Adriatic Sea (Apulian and Montenegrin margins) resulted in the discovery of cnidarian-rich deep-sea habitats in the depth range of ca. 400-700 m. In particular, ROV inspection of Montenegrin canyons reveals the existence of megabenthic communities dominated by a variety of cnidarians, including scleractinians (Madrepora oculata, Lophelia pertusa, Dendrophyllia cornigera),antipatharians (Leiopathes glaberrima) and gorgonians (Callogorgia verticillata) as major habitat forming taxa, often in association with sponges and, subordinately, serpulids. All such cnidarians are new records for the south-eastern side of the Adriatic Sea. Our investigation indicates that an almost continuous belt of patchy cold water coral sites occurs along the entire south-western margin (Apulian),basically connecting the Adriatic populations with those inhabiting the Ionian margin (Santa Maria di Leuca coral province)

    A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation

    Get PDF
    Most Mediterranean prodeltas show undulated sediment features on the foresets of their Holocene wedges. These features have been described all along the Mediterranean for the last 30 years and interpreted as either soft sediment deformation and incipient landsliding, and more recently, as sediment transport structures. We perform a review and detailed analysis of these undulated sediment features using ultrahigh-resolution seismic and bathymetric data as well as geotechnical information and hydrodynamic time series and hydrographic transects. In this study we show that the characteristics of the sediment undulations (configuration of the reflections down section and between adjacent undulations and overall morphologic characteristics) are incompatible with a genesis by sediment deformation alone and do not show evidence of sediment deformation in most cases. Various processes in the benthic boundary layer can be invoked to explain the variety of features observed in the numerous areas displaying sediment undulations
    corecore