
Manuscript Details

Manuscript number JQSR_2016_10

Title Large-scale response of the Eastern Mediterranean thermohaline circulation to
African monsoon intensification during sapropel S1 formation

Article type Research Paper

Abstract

The formation of Eastern Mediterranean sapropels has periodically occurred during intensification of northern
hemisphere monsoon precipitation over North Africa. However, the large-scale response of the Eastern Mediterranean
thermohaline circulation during these monsoon-fuelled freshening episodes is poorly constrained. Here, we investigate
the formation of the youngest sapropel (S1) along an across-slope transect in the Adriatic Sea. Foraminifera-based
oxygen index, redox-sensitive elements and biogeochemical parameters reveal – for the first time – that the Adriatic
S1 was synchronous with the deposition of south-eastern Mediterranean S1 beds. Proxies of paleo thermohaline
currents indicate that the bottom-hugging North Adriatic Dense Water (NAdDW) suddenly decreased at the sapropel
onset simultaneously with the maximum freshening of the Levantine Sea during the African Humid Period. We
conclude that the lack of the “salty” Levantine Intermediate Water hampered the preconditioning of the northern
Adriatic waters necessary for the NAdDW formation prior to the winter cooling. Consequently, a weak NAdDW limited
in turn the Eastern Mediterranean Deep Water (EMDWAdriatic) formation with important consequences for the
ventilation of the Ionian basin as well. Our results highlight the importance of the Adriatic for the deep water ventilation
and the interdependence among the major eastern Mediterranean water masses whose destabilization exerted first-
order control on S1 deposition.

Keywords Sapropel S1; Mediterranean Sea; African monsoons; anoxia; thermohaline
circulation

Corresponding Author tommaso tesi

Corresponding Author's
Institution

CNR

Order of Authors tommaso tesi, Alessandra Asioli, Daniel Minisini, Vittorio Maselli, Giacomo Dalla
Valle, Fabiano Gamberi, Leonardo Langone, Antonio Cattaneo, Paolo
Montagna, Fabio Trincardi

Suggested reviewers Kazuyo Tachikawa, Eelco Rohling, Gerhard Schmiedl, Syee Weldeab

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/148789769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

1 Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon 

2 intensification during sapropel S1 formation

3

4 Tesi, T.1, Asioli, A.2, Minisini, D.3, Maselli, V.4, Dalla Valle G.1, Gamberi, F.1, Langone, L.1, Cattaneo, 

5 A.5, Montagna, P.1, Trincardi, F.1

6

7 1 CNR-ISMAR, Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Sede Bologna, via Gobetti 

8 101, 40129 Bologna, Italy

9 2 CNR-IGG, Consiglio Nazionale delle Ricerche, Istituto Geoscienze e Georisorse, Sede Padova, via G. 

10 Gradenigo, 6, 35131 Padova, Italy,

11 3 Shell International Exploration and Production Inc, 3333 Highway 6 South, Houston, TX 77082, USA

12 4 Dept. of Geology and Petroleum Geology, University of Aberdeen, St. Mary’s Building, King’s College

13 Aberdeen AB24 3UF, UK

14 5 IFREMER, Géosciences Marines-EDROME, Centre de Brest, BP70, 29280 Plouzané, France

15

16 Corresponding author’s email: tommaso.tesi@bo.ismar.cnr.it

17

18

19 Keywords: Sapropel S1; Mediterranean Sea; African monsoons; anoxia; thermohaline circulation

20

21

22

23

mailto:tommaso.tesi@bo.ismar.cnr.it


2

24 Abstract

25 The formation of Eastern Mediterranean sapropels has periodically occurred during intensification 

26 of northern hemisphere monsoon precipitation over North Africa. However, the large-scale response of the 

27 Eastern Mediterranean thermohaline circulation during these monsoon-fuelled freshening episodes is 

28 poorly constrained. Here, we investigate the formation of the youngest sapropel (S1) along an across-slope 

29 transect in the Adriatic Sea. Foraminifera-based oxygen index, redox-sensitive elements and 

30 biogeochemical parameters reveal – for the first time – that the Adriatic S1 was remarkably synchronous 

31 with the deposition of south-eastern Mediterranean S1 beds. Proxies of paleo thermohaline currents 

32 indicate that the bottom-hugging North Adriatic Dense Water (NAdDW) was suddenly 

33 suppresseddecreased at the sapropel onset simultaneously with the maximum freshening of the Levantine 

34 Sea during the African Humid Period. We conclude that the lack of the “salty” Levantine Intermediate 

35 Water hampered the preconditioning of the northern Adriatic waters necessary for the NAdDW formation 

36 prior to the winter cooling. As a resultConsequently, a reduced weak NAdDW limited in turn the Eastern 

37 Mediterranean Deep Water (EMDWAdriatic) formation with important consequences for the ventilation for 

38 of the Ionian basin as well. Our results highlight the importance of the Adriatic for the deep water 

39 ventilation and the implicit bond interdependence among the major eastern Mediterranean water masses 

40 whose destabilization exerted first-order control on S1 formationdeposition.

41  By contrast, enhanced nutrient supply from local rivers had a negligible role.

42
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53 1. Introduction

54 Periodic perturbations of marine ecology and geochemistry have occurred in the eastern 

55 Mediterranean Sea (EMS) since the late Miocene (Nijenhuis et al., 1996). Signs of these changes are 

56 preserved in the sediment record as organic carbon-rich deposits commonly known as sapropels. In this 

57 study we focus on the most recent sapropel (S1) which formed during the last post-glacial eustatic rise (ca. 

58 10-6 cal kyr BP (De Lange et al., 2008; Hennekam et al., 2014; Schmiedl et al., 2010). It is now largely 

59 accepted (Rohling et al., 2015) that favourable conditions for S1 formation were associated with anoxic 

60 bottom waters that developed during periods of insolation maxima (Hilgen, 1991; Rossignol-Strick, 1985; 

61 Rossignol-Strick et al., 1982). The resulting effect of these orbital variations was the northward migration 

62 of the African monsoons resulting in higher precipitation over the Nile river watershed which in turn 

63 enhanced the freshwater supply to the EMS southeastern Mediterranean Sea (Hennekam et al., 2014; 

64 Weldeab et al., 2014). In addition, the mid-Holocene increase of river runoff from northern borderlands 

65 and the post-glacial inflow of less saline Atlantic waters have further contributed to maintaining reduced 

66 surface water salinities and high nutrient concentrations in the euphotic zone (Grimm et al., 2015; 

67 Kotthoff et al., 2008; Spötl et al., 2010; Toucanne et al., 2015). To date, whether and to what degree either 

68 water stratification or enhanced primary productivity has resulted in anoxic bottom waters is still a matter 

69 of debate despite several decades of extensive study (Calvert et al., 1992; De Lange et al., 2008; Grimm et 

70 al., 2015; Sachs and Repeta, 1999).

71 A survey of the current literature dealing with S1 reveals that most of the focus has been placed on 

72 south-eastern Mediterranean sediments while the Adriatic Sea ‒ that today plays a first-order control on 

73 Eastern Mediterranean ventilation (Klein et al., 2000) ‒  has received markedly less interest. In particular, 
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74 it has been suggested (Rohling et al., 1997; Rohling et al., 2015) that the onset of critical oxygen 

75 conditions in the Adriatic (ca. 8.8 cal. ky BP) lagged behind the fairly synchronous anoxia which 

76 developed over the rest of the EMS (ca. 10 cal. ky BP) (De Lange et al., 2008; Schmiedl et al., 2010). This 

77 implies that the ventilation regime under which the Adriatic sapropel formed must have been necessarily 

78 different compared to the south-eastern Mediterranean sapropels. In particular, it was inferred that 

79 persistent ventilation in the Adriatic during the early stage of the sapropel formation hampered the initial 

80 development of oxygen-depleted conditions justifying the delayed S1 onset in respect to the rest of the 

81 EMS (Mercone et al., 2000; Rohling et al., 2015). 

82 This high-resolution (decadal-millennialcentennial) study aims at testing this hypothesis by 

83 reconstructing the oceanographic regime under which Adriatic sapropels formed.  Our analysis builds on 

84 three well-dated sediment cores collected in three different water depths from the shelf to the deep basin 

85 (Fig. 1 and 2). With the objective of understanding timing and conditions which promoted anoxic bottom 

86 waters, we present a suite of complementary analyses which include foraminifera assemblages, inorganic 

87 elemental composition and organic matter composition. The relatively young age of S1 makes it an ideal 

88 target to develop a precise radiocarbon-based Bayesian age model across the three sites establishing also a 

89 robust chronological link to other S1 depostisdeposits across the EMS. Thus, by identifying coeval and 

90 genetically linked depositsstrata, we will evaluate the necessary conditions leading to the sapropel S1 

91 formation in Adriatic sediments and test to what extent these prerequisites are linked to the deposition of 

92 sapropel beds in the rest of the EMS. 

93

94 2. Material and methods

95 2.1 Sediment cores

96 The dataset presented here consists of three piston cores retrieved in the Adriatic Sea with variable 

97 barrel lengths (5–20 m) (Fig.1 and 2). Core AMC99-1 (45°51’.80 N & 14°45’.68 E, 260 m; Fig. 1) was 

98 collected in the central Adriatic basin from the bottom of the mid-Adriatic depression (MAD, Fig. 2b). 
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99 Core INVAS12-10 (41°30’.25 N & 17°10’.78 E, 570m; Fig 3) and core SA03-1 (41°30’.25 N & 

100 17°10’.78 E, 567 m) were collected 5 m apart from each other (i.e., twin cores; Fig. 1 and 2c) in the 

101 southwest Adriatic slope. Finally, core ST04-1 (41°27’.46 N & 17°31’.05 E, 1085 m; Fig. 3) was retrieved 

102 in the deep basin plain of the south-western Adriatic Sea (Fig. 1 and Fig. 2c).

103

104 2.2 Seismic acquisition and core handling

105 The seismic dataset used in this study has been collected by ISMAR-CNR (Bologna) on board R/V 

106 Urania, in the last two decades. Seismic data were acquired with a hull-mounted Chirp-Sonar Profiler with 

107 16 transducers, characterized by 2–7 kHz sweep-modulated bandwidth, equivalent to a 3.5 kHz profiler, 

108 with a recording length up to 1500 ms, depending on water depth, and a penetration of 50–100 m, with 

109 vertical resolution of ca. 0.5 m. Track line positioning was based on differential GPS navigation, assuring 

110 a position accuracy of 10 m and transformed to geographic coordinates referred to the ED-50 datum. 

111

112 2.3 Digital x-ray radiograph

113 Prior to subsampling, cores were x-rayed using a Gilardoni MPX160 as a source and an amorphous 30 cm 

114 long silicon (a-Si) flat panel sensor as a detector (Kodak) typically exposed at 70 kV and 5 mA for ca. 6.4 

115 s. For each digital image the pixel dimension is 125 m and resolution is 1932×2348 pixels.

116

117 2.3 4 Foraminifera

118 Sediment samples (1-cm thick interval) were oven dried at 50°C, washed through a 63 m sieve and 

119 dried again at 50°C. Each sample was subsequently split into aliquots using a Jones microsplitter. Aliquots 

120 were counted to reach at least 300 specimens of planktonic foraminifera and 300 specimens of benthic 

121 foraminifera. In anoxic beds only planktonic foraminifera were observed. The quantitative study was 

122 performed on the fraction >10660m to avoid juvenile specimens, consistent with the existing Adriatic 
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123 literature (Favaretto et al., 2008; Narciso et al., 2012; Piva et al., 2008). However, the <1606 m fraction 

124 was always checked in order to identify those specimens which can pass the mesh because of an elongated 

125 shape of their shell (e.g. Fursenkoina) or because of the small size of their adult stage (e.g. Epistominella).

126  Foraminifera concentration is reported as the number of specimens per gram of dry sediment. Data 

127 were then integrated with previous published studies (core SA03-1 and AMC99-1; (Favaretto et al., 2008; 

128 Narciso et al., 2012; Piva et al., 2008)) to gain higher resolution within the time interval studied. 

129 Specifically, twenty-two new samples from SA03-01 were merged with published data (Favaretto et al., 

130 2008; Narciso et al., 2012) while 42 new samples from core AMC99-1 were integrated with data 

131 published (Piva, 2007; Piva et al., 2008). Finally, fifty-three samples of core INVAS12-10 were examined 

132 with a semi-quantitative analysis to identify key levels (bioevents) for stratigraphic and chronologic 

133 purposes (i.e., correlation with the sister core SA03-1), as all geochemical analyses were performed on 

134 core INVAS12-10. 

135 The Oxygen Index (OI) (Schmiedl et al., 2003) was used to provide a general trend of bottom 

136 oxygen conditions. It is calculated as (HO/(HO+LO)+Div) x 0.5 where HO is the relative abundance of 

137 high oxygen indicators (Miliolids, Articulina tubulosa+Cibicidoides pachydermus+Gyroidinoides 

138 orbicularis), LO is the relative abundance of low oxygen indicators (Fursenkoina spp., Chilostomella 

139 oolina, Globobulimina spp.), and Div is the normalized benthic foraminiferal diversity H(S). The term is 

140 multiplied by 0.5 to distinguish between anoxic (minimum value = 0) and oxic (maximum value = 1) 

141 conditions (Schmiedl et al., 2010; Schmiedl et al., 2003).  The index has been calculated for cores ST04-1 

142 and SA03-1, while for core AMC99-1 the term LO (=species of the group A by (Jorissen, 1999) with a 

143 deep infaunal microhabitat, especially resistant to low oxygen conditions), has been replaced by the 

144 infaunal benthonic taxa of the group B by Jorissen (1999), that is Bolivina spp/Brizalina spp, Bulimina 

145 costata/ inflata and Uvigerina peregrina, with an infaunal microhabitat, more opportunistic than the 

146 species of group A , but less resistant for low oxygen conditions (Schmiedl et al., 2003) because deep 

147 infaunal species were absent, or near-absent, during the time equivalent to the Sapropel 1a deposition, as 
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148 already reported in the central Adriatic by Ariztegui et al. (2000). The absence/near-absence of species of 

149 the LO term would have resulted into not realistic values indicating highly oxygenated bottom condition 

150 in the OI index during the Sapropel 1a interval, making necessary the use of the abundant taxa of group B.  

151 Reworked species used as bottom current proxy include the modern living inner-shelf species such 

152 as Ammonia spp, Elphidium spp, Haynesina spp. and epiphyitic species (Asterigerinata spp, Buccella 

153 granulata, Patellina corrugata) (Jorissen, 1988) corresponding to Biofacies II and III in the Adriatic. We 

154 interpret the presence of these displaced species by sediment shedding from shallower waters (Trincardi et 

155 al., 2007), in particular from outer-shelf coarser/sandy (Spagnoli et al., 2010) deposits formed during the 

156 LGM and presently swept by NAdDW.  The Oxygen Index (Schmiedl et al., 2003) has been calculated for 

157 cores ST04-1 and SA03-1, while for core AMC99-1 the term LO (=low oxygen indicators, corresponding 

158 to the deep infaunal benthonic species (Jorissen, 1999)) has been replaced by infaunal benthonic species 

159 (Bolivina spp/Brizalina spp, Bulimina costata/inflata and Uvigerina peregrina) (Schmiedl et al., 2003) as 

160 deep infaunal species were absent. Reworked species used as bottom current proxy include Ammonia spp, 

161 Elphidium spp, and epifiticepiphytic species corresponding to Biofacies II and III in Adriatic (Jorissen, 

162 1988).  We interpret the presence of these displaced species by sediment shedding from shallower waters 

163 (Trincardi et al., 2007), in particular from outer-shelf coarser/sandy (Spagnoli et al., 2010) deposits 

164 formed during the LGM and presently swept by NAdDW.  

165 Reworked species used as bottom current proxy include the modern living inner-shelf species such 

166 as Ammonia spp, Elphidium spp, Haynesina spp. and epifitic species (Asterigerinata spp, Buccella 

167 granulata, Patellina corrugata) (Jorissen, 1988) corresponding to Biofacies II and III in the Adriatic. We 

168 interpret the presence of these displaced species by sediment shedding from shallower waters (Trincardi et 

169 al., 2007), in particular from outer-shelf coarser/sandy (Spagnoli et al., 2010) deposits formed during the 

170 LGM and presently swept by NAdDW.  

171 Radiocarbon measurements on monospecific tests (5-7 mg) of the planktonic foraminifer 

172 Globigerinoides ruber (species living above the thermocline) were performed at the National Ocean 
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173 Sciences Accelerator Mass Spectrometry (NOSAMS) Facility (USA). On average, 400-600 specimens 

174 were hand-picked from the size fraction > 0.180 mm. Specimens were ultrasonicated in distilled water to 

175 remove potential sediment impurities. For level ST040-1 XII 61-62 cm, the planktonic foraminifer 

176 Globorotalia inflata was used due to the lack of a sufficient amount of G. ruber specimens. 

177

178 2.6 5 X-ray fluorescence (XRF)

179 The inorganic composition of bulk sediments was characterized using a wavelength dispersive 

180 sequential Philips PW2400 XRF spectrometer (Mercone et al., 2001) (at the Department of Geosciences, 

181 (University of Padova). The XRF instrument was operated under vacuum conditions on samples prepared 

182 as glass beads using lithium tetraborate and melted with a fluxer Claisse Fluxy (~1150°C). The standard 

183 error (based on several measurements of the same sample) is less than 0.6% and 3% for major element and 

184 trace elements, respectively. For this study, we focused on selected elements which include Ti, V, Mn and 

185 S. . Sediments corresponding to tephra layers (characterized by high Zr excess) were analyzed but the data 

186 are not shown.

187

188 2.7 6 Grain-size

189 About 3 g of dried sediments were resuspended in a 40 ml solution of sodium metaphosphate 

190 (0.6%) and sonicated for 20 minutes at high energy.  Prior to the analysis, samplesd were wet sieved at 63 

191 m. A few drops of wet samples were checked with the microscope to examine the presence of 

192 microfossil remains. PParticle size distribution of the <63 m fraction was measured using a 

193 Micromeritics SediGraph™ III 5120. according to the settling velocity method (Bianchi et al., 1999). 

194 Sortable silt concentration was calculated as the fraction by weight of the total mass ranging between 10 

195 and 63m (McCave and Hall, 2006).

196
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197 2.8 7 Organic Geochemistry

198 Samples for organic carbon (OC) content were placed in silver capsules and pre-treated with HCl 

199 (1.5 M) to remove the inorganic carbon (Nieuwenhuize et al., 1994). Oven-dry samples were analysed 

200 using a Thermo Quest-Finnigan Delta Plus isotope ratio mass spectrometer, directly coupled to a FISONS 

201 NA2000 Elemental Analyzer by means of a CONFLO II interface. 

202 Lignin analyses (terrigenous biomarkers) were carried out using a Microwave digestion system 

203 (Tesi et al., 2014). Dry samples were placed in Teflon vessels with 8 ml of alkaline solution (2N NaOH), 

204 500 mg of CuO, 50 mg of Fe(NH4)2(SO4)2·6H2O and oxidized for 1.5 h at 150 °C. After the oxidation, a 

205 known amount of recovery standards (ethylvanillin and trans-cinnamic acid) were added to each vessel 

206 and acidified to pH 1 with HCl. Reaction products were then extracted with ethyl acetate, evaporated to 

207 dryness under N2 and redissolved in pyridine. Reaction products were analysed as trimethylsilyl 

208 derivatives (BSTFA reagent) via GC-MS. Compounds were separated chromatographically in a 30 m×250 

209 μm DB1 (0.25 μm film thickness) capillary GC column, using an initial temperature of 100 °C, a 

210 temperature ramp of 4 °C min-1 and a final temperature of 300 °C. Phenol biomarkers were quantified 

211 using the response factors of commercially available standards (Tesi et al., 2014).

212

213 3. Chronology

214 3.1 Age-depth models

215 Bayesian age-depth models were performed using the OxCal 4.2 program 

216 (https://c14.arch.ox.ac.uk/embed.php?File=oxcal.html) and a comprehensive dataset, which includes both 

217 14C measurements carried out on monospecific foraminifera samples (this study) as well as radiocarbon-

218 dated bioevents based on a detailed event biostratigraphy from each sediment core (Fig. 4 and 5).  

219 Radiocarbon age (uncalibrated) of well-known bioevents was based on published studies in the Adriatic 

220 (Table 1). 

https://c14.arch.ox.ac.uk/embed.php?File=oxcal.html
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221 Bioevents (uncalibrated) used for the age-depth models include the following planktonic species or 

222 planktonic assemblage turnovers (Fig. 4 and Table 1): 

223 - Bioevent I (10450±90 14C yBP), abrupt increase of Globigerinoides ruber, a warm-water species 

224 signalingsignalling the top of the Younger Dryas dated in core CM92-43 (Asioli et al., 2001). This 

225 bioevent marks the end of the Greenland Stadial 1 (GS1) and the beginning of the Holocene (top ecozone 

226 V) (Asioli et al., 2001; Asioli et al., 1999; Blockley et al., 2004) and also the top of ecozone 7 (Siani et al., 

227 2010) . The GS-1/Holocene transition is also testified by the lowering of the δ18O values (Asioli et al., 

228 1999; Jorissen et al., 1993; Narciso et al., 2012; Siani et al., 2000);

229 - Bioevents II and III (9860±60 and 9360±50 14C yBP, respectively), two peaks in the abundance of 

230 Globorotalia inflata (i.e., younger and older). These bioevents were described and dated in core SA03-1 

231 (Favaretto et al., 2008) before its temporary disappearance at the base of the Sapropel S1;

232 - Bioevent IV (5880±60 14C yBP), last Occurrence of G. inflata dated in core RF93-30 (Trincardi et al., 

233 1996). This is a well-documented bioevent recognized in the whole Adriatic after the sapropel 

234 S1termination (Ariztegui et al., 2000; Asioli et al., 1999; Capotondi et al., 1999; Siani et al., 2010). 

235 All 14C dates (new radiocarbon dates and bioevents) were converted to calendar years (cal yr BP) 

236 using the latest Marine13 calibration curve (Reimer et al., 2013) in OxCal, prior to calibration, ages were 

237 corrected for an extra 136±41 14C-years regional reservoir effect (ΔR) using the values reported in the 

238 Marine Reservoir Correction Database (http://calib.qub.ac.uk/marine/).  Above the sapropel unit (<5 kyr), 

239 the age-depth model of AMC99-1 relays on benthic monospecific tests (Cibicidoides pachyderma). For 

240 this reason,  Only for core AMC99-1 and above the sapropel deposit, ΔR was set 336±41 an extra 200 

241 years of reservoir correction was used for these for radiocarbon ages Cibicidoides pachyderma (benthic 

242 species) based according to on the difference offset between planktonic and benthonic organisms 

243 previously assessed in this core (Piva et al., 2008). Bayesian age-depth model (Lowe et al., 2007; Ramsey, 

244 1995; Ramsey and Lee, 2013) was implemented using variable rigidity for the Poisson-Process Modeling 

245 (k variable ranging between 0.01 and 100 cm-1). The Outlier-Model analysis was performed with the 

http://calib.qub.ac.uk/marine/
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246 General setting and the prior probability fixed to 0.05, which weighs down the radiocarbon measurement 

247 that have statistical probability of more than 5% of being outliers. The output resulted in robust age 

248 models with an overall solid structure of the dated sequence (Fig. 5) as defined by an excellent agreement 

249 index (>90%) between calibrated and modelled ages.

250 It is worth mentioning that foraminifera assemblages were studied in SA03-1 core while the rest of 

251 the analyses were performed on the sister core INVAS12-10 from the same site (Fig. 1 and 2c) on which 

252 we have constructed the age-depth model based on a greater number of radiocarbon measurements. Cross-

253 correlation between twin cores was carried out relaying on bioevents and tephra (magnetic susceptibility 

254 anomalies). Events in chronological order include: top of the Younger Dryas, two G. inflata peaks (during 

255 the Pre Boreal), peak of C. bradyi, a large magnetic susceptibility peak marking a tephra layer, two G. 

256 inflata peaks (during S1 break and S1b, respectively) and the Llast Occurrence of G. inflata (Fig. 4). Ages 

257 between midpoints were estimated via linear interpolation.

258

259 3.2. Comparison between stratigraphic records from the southern Adriatic basin

260 Prior studies have investigated the S1 in the southern Adriatic basin in the following cores: IN68-9 

261 (Jorissen et al., 1993; Rohling et al., 1997; Van Straaten, 1970), MD90-197 (Mercone et al., 2001; 

262 Mercone et al., 2000; Siani et al., 2013; Siani et al., 2000; Siani et al., 2010) and AD91-17 (Capotondi et 

263 al., 1999; Giunta et al., 2003; Sangiorgi et al., 2003) (Fig. 6A). Here, prior to presenting and discussing the 

264 data, we compare our record from the same region with these published records from the stratigraphic 

265 point of view. For the comparison, we selected five main widespread bioevents commonly observed in the 

266 Adriatic Sea (Fig. 6B) (Asioli et al., 1999; Narciso et al., 2012; Piva et al., 2008; Rohling et al., 1997; 

267 Santacroce et al., 2008; Trincardi et al., 1996). Bioevents include:

268 - bioevent I (top GS-1/YD): abrupt increase of G. ruber

269 - bioevent II: older peak of G. inflata

270 - bioevent III: younger peak of G. inflata
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271 - G. ruber maximum peak of frequency in S1a

272 - Globoturborotalita rubescens peak in S1a

273

274 Among these cores, IN68-9 core (i.e., core 362 in previous publications (Van Straaten, 1970) is 

275 particularly relevant because our current understanding of the S1 onset is largely based on this record 

276 (Rohling et al., 1997; Rohling et al., 2015). IN68-9 was collected at 1234 m water depth (Fig. 11A) and all 

277 the aforementioned biostratigraphic events (source PANGEA, doi:10.1594/PANGAEA.407648) are 

278 present and stratigraphically coherent with ST04-1 (bioevent I corresponds in this core to the ecozones I/II 

279 boundary) (Fig. 6B). Another similarity includes the ash layer at cm 128-130. Geochemical analysis 

280 defined this event as Mercato tephra (Calanchi and Dinelli, 2008) which is positioned just below the 

281 increase of G. rubescens.

282 Despite the overall coherence between IN68-9 and ST04-1 from a stratigraphy point of view, 

283 bioevents in IN68-9 exhibit a much younger age compared ST04-1, especially within S1a. To further 

284 investigate this discrepancy, we performed a new picking of planktonic foraminifera directly on IN68-9 

285 close to the G. ruber peak (137-138 cm). It was possible to date this interval in core IN68-9 because two-

286 thirds of the original core are currently stored at ISMAR Bologna. The new radiocarbon date (9030±30 yr 

287 BP, uncalib.; NOSAMS-WHOI; Table S1) turned out much older than the age assessed with the previous 

288 age-depth model (ca. 8110 yr BP 14C age) but remarkably consistent with the chronology of ST04-1.

289 The reason for this offset (ca. 1000 y) between the new radiocarbon date and the previous age-depth 

290 model (Rohling et al., 1997) is unknown and falls outside the scope of this manuscript. However, it is 

291 worth mentioning that the age-depth model of IN68-9 within the S1 interval essentially relies only on two 

292 radiocarbon dates (Rohling et al., 1997). We can only suppose that the problem might derive from the 

293 lowest radiocarbon date (155.5-157.5 cm, 9280±180 yBP 14C) which is somehow erroneously too young. 

294 In fact, this interval roughly corresponds to bioevent II which is again much younger (ca. 1000 years) 

295 when compared with our record. Furthermore, this offset is conservative considering that this radiocarbon 
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296 test at 155.5-157.5 cm corresponds to a mixture of benthic foraminifera (Jorissen et al., 1993). Thus, at 

297 most, the radiocarbon date should have been older rather than younger.

298 Core MD90-197 was collected at 1010 m water depth (Fig. 6A). Three curves of planktonic species 

299 (G. ruber, G. inflata and Globigerinita glutinata) were visually extrapolated based on the plot of 

300 planktonic species vs age previously published (Siani et al., 2010). For this core only two bioevents of 

301 core ST04-1 were recognized: Bioevent I and II. The G. ruber peak is present but it is coeval with the 

302 tephra layer E1 (Gabellotto-Fiumebianco) located close to the S1 interruption and proved to be younger 

303 than Mercato tephra (Caron et al., 2012; Marchini et al., 2014). What is striking about this core is the 

304 relatively lower thickness of S1a compared to S1b which is unusual for S1 (Mercone et al., 2001; Mercone 

305 et al., 2000). This might reflect either a condensed interval or a hiatus above the G. glutinata peak. To test 

306 this hypothesis, we compared the V/Al record that displays a large peak right after the S1 onset in both 

307 Adriatic basin (ST04-1) and slope (INVAS12-10) (Fig 6C). This peak is also well present in other south-

308 eastern S1 deposits (e.g., LC21, Aegean Sea (Mercone et al., 2001). The XRF analyses were performed 

309 every cm in MD90-197. However, despite the high resolution, the V/Al peak is not visible (Mercone et al., 

310 2001) (Fig. 12C)

311 An examination of all radiocarbon dates available for MD90-197 (both mixed planktonic 

312 foraminifera and monospecific tests (Mercone et al., 2000) reveals a drastic drop in sedimentation rate 

313 where the V/Al is expected. This suggests once again either a condensed unit or a hiatus. Even considering 

314 the error associated with pulling together monospecific radiocarbon tests and mixed planktonic species 

315 (these latter integrate the signal of a thicker water column), the apparent drop of sedimentation seems to 

316 be still evident in the radiocarbon data (Mercone et al., 2000). Unfortunately, benthic foraminifera are not 

317 available for MD90-197 which hampers the direct comparison with ST04-1. For example, the C. bradyi 

318 observed in both ST04-1 and IN68-9 at the base of S1a could have provided additional important clues.

319 Finally, core AD91-17 was collected at 844 m water depth. Two curves of planktic foraminifers (G. ruber 

320 and G. inflata) were reported in Fig. 6A based on previous studies (Capotondi et al., 1999). A recent study 
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321 showed that the Mercato tephra in this core is present in correspondence of the S1 onset (Marchini et al., 

322 2014). However, Mercato is stratigraphically positioned ca. in the middle of S1a above the G. ruber peak 

323 in both IN68-9 and ST04-1, this implies that the lower part of S1a is not present. Indeed, just below 

324 Mercato, previous publications have highlighted the presence of a turbidite (Giunta et al., 2003).

325

326 Finally, core AD91-17, collected at 844 m water depth (6A), records the Sapropel 1 deposition between 

327 cm 190 and 125 (Giunta et al., 2003, Marchini et al., 2014). Two curves of planktic foraminifers (G. ruber 

328 and G. inflata) were reported in Fig. 6A based on previous studies (Capotondi et al., 1999). 

329 Tephrostratigraphy of this core shows that the sapropel onset (190-191 cm) corresponded to upper limit of 

330 Mercato tephra (Marchini et al., 2014). However, Mercato tephra is stratigraphically positioned ca. in the 

331 middle of S1a, above the G. ruber peak in IN68-9 (Calanchi and Dinelli, 2008; Rohling et al., 1997) and 

332 in ST04-1. The fact that this G. ruber positioned peak below Mercato is not visible in AD91-17 (Fig. 6A) 

333 suggests that the lower portion of the S1a is missing. In fact, previous publications have highlighted the 

334 presence of a turbidite just below Mercato between cm 200 and 196 (Giunta et al., 2003) which further 

335 support the hypothesis of the stratigraphic gap.

336

337 4. Results and discussion

338 4.1 Coeval sapropel deposits cross-margin settings

339 In this study we present data from sediment cores retrieved in three different regions of the 

340 Adriatic Sea: (i) the mid-Adriatic depression (MAD), (ii) the south-western continental slope and (iii) the 

341 southern deep basin (Figs. 1 and 2). The mid-Adriatic depression represents a small remnant basin, which 

342 was partially filled with sediment during the last glacial maximum (core AMC99-1, 260 m (Piva et al., 

343 2008); Fig. 2b). High-resolution chirp-sonar profile across the coring site shows continuous and high-

344 amplitude sub-parallel reflectors, which denote sedimentation in low-energy conditions. 
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345 The slope coring site is characterized by large-scale bottom-current deposits formed by prolonged 

346 activity of the thermohaline circulation (core INVAS12-10 and SA03-1, from 570 and 567 m respectively 

347 (Minisini et al., 2006) (; Fig. 2c). On chirp profiles, these deposits are organized in fields of large sediment 

348 waves characterized by wavy and high-amplitude reflectors (Fig. 2c). The coring site was selected on the 

349 depositional (up-current) flank of one sediment wave. 

350 Finally, the coring site in the southern Adriatic deep basin is characterized by pelagic 

351 sedimentation as shown by sub-parallel reflectors, although dense NAdDW can occasionally reach and 

352 impact this area (ST04-1, 1085 m Minisini et al. (2006); Fig. 2d). 

353 Despite the different bathymetric contexts, radiocarbon dates from monospecific tests indicated 

354 that these three records represent coeval deposits within the time interval under examination (Table 1). 

355 Detailed biostratigraphy examination for all three cores revealed the occurrence of bioevents commonly 

356 observed in the study region, which were used to independently test the stratigraphic continuity of our 

357 records (Fig. 4). High-resolution Bayesian 14C-based age-depth models confirmed continuous deposition 

358 consistent with bioevents and seismic profiles (Fig. 5).  

359

360 4.2 Adriatic Sapropel deposition

361 4.2.1 Pre-sapropel and S1 onset

362 Sapropels are beds with elevated organic carbon (OC) content that contrast with overlying and 

363 underlying sediments. In this study, S1 boundaries are defined based on the OC anomalies in respect to the 

364 background level. The definition of sapropels can further extend to anomalies of several other parameters 

365 including Ba/Ti ratio, redox sensitive elements, foraminifera assemblages and magnetic susceptibility or 

366 simply changes in sediment colour (De Lange et al., 2008; Mercone et al., 2000; Rohling et al., 1997; 

367 Santvoort et al., 1997; Schmiedl et al., 2010; Tachikawa et al., 2015; Vigliotti et al., 2008). Here, we will 

368 also discuss these other parameters alongside along the OC data in order to provide a multifaceted view on 

369 S1 formation.
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370 Our deepest-water record in from the southern Adriatic (ST04-01, 1085 m; Fig. 7a6a) shows a 

371 gradual OC increase since 11 cal. ky BP before the typical sapropel onset (ca. 10 cal. ky BP) (Hennekam 

372 et al., 2014; Rohling et al., 2015; Schmiedl et al., 2010). This trend is consistent with the foraminifera-

373 based oxygen index (Schmiedl et al., 2010) (OI) which reveals a pre-sapropel deterioration of pore-

374 waterbottom oxygen levels in the deep basin since ca. 11 cal. ky BP (Fig. 8a 7a and Fig. 9a8a). Analogous 

375 pre-sapropel conditions, ascribed to stratification have recently been documented in the deep Levantine 

376 basin at 1780 m water depth using a suite of redox-sensitive elements (Tachikawa et al., 2015). Post-

377 glacial freshening driven by the inflow of less saline Atlantic waters via the Gibraltar strait followed by 

378 the African Humid Period have certainly exerted a major control on the surface water stratification, 

379 vertical mixing and hence intermediate and deep water formation (Rohling et al., 2015; Weldeab et al., 

380 2014). (Rogerson et al., 2008)This is also in line with recent regional simulations which described a 

381 gradual deterioration of the deep water ventilation in the EMS since the Heinrich-1 event (H1, ca. 18-16 

382 cal ky BP) (Grimm et al., 2015). Enhanced stratification since the H1 event was one of the major drivers 

383 that promoted the formation of organic rich layers (ORLs) in the Alboran Sea (Rogerson et al., 2008). In 

384 this western Mediterranean region, the continental run-off due to Alpine glacier thawing (i.e., enhanced 

385 Rhone river discharge) combined with the Atlantic inflow likely weakened the Western Mediterranean 

386 Deep Water ventilation promoting the deposition of ORLs (Rogerson et al., 2008).

387 The onset of relatively high OC content which marks the beginning of the Adriatic S1 (i.e, S1a) 

388 was synchronous among our records and it was dated around 10 cal ky BP in across the all three sites (Fig. 

389 7 6 a, b, c). After this coeval OC increase, the deep Adriatic basin (ST04-1) rapidly turned into an azoic 

390 environment (Fig. 9a8a). Specifically, as the pore water oxygen decreased in the basin (Fig. 8a), only 

391 infaunal foraminifera could initially tolerate oxygen-poor conditions although the benthic environment 

392 rapidly became hostile even for deep infaunal taxa (Fig. 9b8b). Azoic conditions in the basin are marked 

393 also by authigenic vanadium enrichments (V/TiO2; Fig. 9b8b) as commonly observed in sapropel beds 

394 (Mercone et al., 2001; Tachikawa et al., 2015). Vanadium precipitation is expected in highly reducing 

395 environments as its solubility rapidly decreases at the oxic-anoxic boundary which is controlled via 
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396 diffusion processes across the sediment-water interface (Mercone et al., 2000). Sulphur enrichment 

397 (S/TiO2) in sapropel beds - likely in the form of authigenic pyrite (Passier et al., 1997) - further 

398 corroborates the change of redox conditions characterized by microbial-driven sulfate reduction in 

399 response to the oxygen-poor environment (Fig. 10 9 d, e, f). 

400

401 4.2.2  Sapropel break, sapropel S1b and sapropel termination

402 An interruption within the sapropel unit is visible in our records between ca. 7.8 and 8.3 cal ky 

403 BP. During the break both OC content and V/TiO2 decreased while the OI increased indicating a 

404 temporary re-oxygenation at the seabed (Fig 7a6a, b, c; Fig 87). The overall trend observed here has been 

405 documented in several other S1 deposits further south-east and down to ca. 1,800 m water depth (De 

406 Lange et al., 2008; Tachikawa et al., 2015).  Reactivation of the convective overturn driven by heat loss 

407 during cooling events in the northern Adriatic has been suggested as the most likely scenario to explain 

408 the temporary re-oxygenation (Marino et al., 2009; Rohling et al., 1997). The interruption was particularly 

409 evident over basin and slope sediments while in the shallower mid-Adriatic slope basin did not display 

410 significant change over the break. Already being an oxic environment, it is likely that the mid-Adriatic 

411 depression (AMC99-1) was not particularly affected by the temporary resumption of the ventilation.

412 After the sapropel break, the second phase of S1 deposition (i.e., S1b) lasted for ca. 1 ky. Both 

413 V/Ti ratio and oxygen index indicate that the reducing conditions during S1b were not as severe in slope 

414 sediments as during S1a (Fig. 8 7 c, d). This is also consistent with the presence of relatively lower 

415 authigenic sulphur content, which suggests comparatively lower sulphate reduction rates during S1b (Fig. 

416 10 9 d, e, f). By contrast, the deep southern basin became azoic again for ca. 500 yr (Fig. 8a7 a and 8 a). 

417 The transitory reappearance of benthic foraminifera and high OI value around 7.4 cal ky BP in the 

418 deep basin (ST04-1) suggests another short-lived ventilation event within the S1b (Fig. 78a) prior to the 

419 S1 termination. This was a rather short-lived event but widespread over the EMS as previously observed 

420 in the Aegean and Ionian regions (Filippidi et al., 2016).
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421 The complete recovery of the deep-water ventilation, which marks the sapropel termination, was 

422 fairly synchronous among our records according to the OC anomalies (ca. 6.8 cal ky BP, Fig. 7 6 a,b,c). 

423 However, the OI displayed a bathymetric gradient (Fig. 8a7a, b, c) consistent with what observed in the 

424 Levantine and Aegean regions where the ventilation started in shallow environment and gradually 

425 extended towards greater water depths towards deeper sediments (Schmiedl et al., 2010). As the oxygen 

426 reached the seabed, the authigenic enrichment of MnO2 (Fig. 10a9a) provides a geochemical redox marker 

427 to track the maximum penetration of oxygen in sediments after the anoxic period (Reitz et al., 2006; 

428 Tachikawa et al., 2015).

429  While OC concentration levels were re-established after the sapropel over basin and slope, the 

430 OC remained relatively high in the mid-Adriatic depression (AMC99-1; Fig. 7 6 c) even after the S1 

431 termination. The OI based on intermediate infaunal foraminifera reveals a relatively moderate but 

432 continuous decrease of the pore-water oxygen concentration in this region throughout the S1 deposition 

433 (Fig. 8c7c). This trend likely reflected the sea level rise which pushed towards land the main path of the 

434 North Adriatic Deep Water (NAdDW) causing a less efficient ventilation of the Adriatic depression. It is 

435 well documented that the modern NAdDW path is mainly confined to the western shelf due to the Coriolis 

436 force as it moves southwards (Vilibić and Supić, 2005). Today, only major events of dense water 

437 formation can efficiently ventilate the deepest region of the Adriatic depression (Marini et al., 2015). 

438 When this occurs, the dense plume lifts the old water mass which is characterized by relatively low 

439 oxygen concentrations testifying its long residence time within the morphological depression (i.e., one or 

440 several years) (Marini et al., 2015).

441

442 4.3 Sediment waves growth and thermohaline forcing

443 In the South Adriatic slope within the field of upslope-migrating sediment waves (core SA03-1, 

444 567 m; Fig. 2c), the relative abundance of reworked inner-shelf foraminifera suddenly decreased at the S1 

445 onset (Fig. 67d). The presence of allochthonous taxa at this depth is expected considering the 
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446 thermohaline forcing that generates these sedimentary bodies (Trincardi et al., 2007). Specifically, 

447 sediment waves are essentially swept by protracted thermohaline currents which have sufficient energy to 

448 resuspend inner-shelf taxa and disperse them towards greater depths (Langone et al., 2015). Bottom 

449 currents in the southern Adriatic slope are principally controlled by LIW and NAdDW as well as their 

450 interaction which ultimately generates the Adriatic Eastern Mediterranean Deep Water (EMDWAdriatic) 

451 (Millot, 1999). Mooring lines deployed just down-flow respect to the sediment wave field showed that the 

452 modern NAdDW-driven bottom currents can reach over 60 cm s-1 during the cascading season (Langone 

453 et al., 2015) (i.e., the modern NAdDW forms around Jan-Feb and reaches the southern margin around 

454 March-April (Langone et al., 2015; Turchetto et al., 2007). Consequently, the sudden decrease of inner-

455 shelf taxa coeval with the S1 onset likely reflects the virtual shutdown of the NAdDW or, more precisely, 

456 a shallow ventilation confined to the uppermost region of the water column. 

457 This explanation is indeed consistent with the general temporal trend shown by the shedding of 

458 allochthonous foraminifera from the shelf throughout the S1 deposition. For example, as previously 

459 mentioned, the S1 interruption is likely the expression of a cooling phase which promoted the temporary 

460 reactivation of the dense water formation in the northern Adriatic Sea (Rohling et al., 1997) and, 

461 consequently, the advection of reworked inner-shelf taxa over the slope (Fig. 7d6d). Likewise, S1b and S1 

462 termination are associated with decrease and increase of inner-shelf taxa, respectively (Fig. 7d6d).

463 The non-cohesive fraction of marine sediments - generally known as ‘‘sortable silt’’ (SS, 10–63 

464 m) - further supports the decrease of the deep-water ventilation during the S1 deposition (Fig. 7e6e). The 

465 sortable silt is operationally defined as the fraction of fine-grained sediments whose sorting and 

466 concentration vary in response to hydrodynamic processes (McCave and Hall, 2006). As large errors 

467 affect the SS mean grain estimates for low concentrations of SS, here we report only the SS% by weight 

468 as a qualitative proxy for paleo-current regimes (Fig. 7e6e). The SS% suggests a progressive decrease of 

469 the bottom-current energy since the end of the Younger Dryas (ca. 11.5 cal ky BP) with the minimum 

470 observed just at the S1 onset. Overall, the SS trend is consistent with the general distribution of the inner-
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471 shelf foraminifera (Fig. 7d6d), which further highlights drastic changes of the thermohaline forcing 

472 associated with the pace of the NAdDW.

473

474 4.4 Weakening of LIW as main trigger for Adriatic S1 deposits

475 Our results from the sediment wave field revealed that the onset of the sapropel S1 in Adriatic 

476 sediments is coeval with the drastic weakening of the North Adriatic Deep Water (NAdDW, Fig. 1). 

477 Based on this evidence, we envision a direct relation of cause and effect in which suddenly weakened 

478 deep water ventilation formation resulted in oxygen depleted bottom waters.

479 Several combined factors might have caused the abrupt decrease of the thermohaline forcing in 

480 the Adriatic Sea. A key aspect to consider lies in the evident similarities with the south-eastern 

481 Mediterranean Sea. First of all, the comparison with the Levantine, Aegean and Ionian Seas reveals that 

482 the S1 onset in the Adriatic is remarkably coeval (within age-depth model uncertainties) with the sapropel 

483 formation in these regions. Specifically, a recent review (Schmiedl et al., 2010) that has compiled several 

484 south-eastern Mediterranean cores indicated that the onset of critical oxygen concentrations (i.e, oxygen 

485 index being less than 0.5) occurred around 10.2±0.3 cal ky BP. The collapse of the Adriatic benthic fauna 

486 in slope and basin sediments based on the same oxygen index threshold occurred within this time interval 

487 (Fig. 810 a, b). This comparison thus reveals that S1 onset in the Adriatic was coeval with the rest of the 

488 south-eastern Mediterranean sapropel beds. Further evident similarities with the south-eastern 

489 Mediterranean sapropels emerge when comparing the temporal anomalies of several other geochemical 

490 parameters such as bulk OC (Filippidi et al., 2016; Hennekam et al., 2014; Vigliotti et al., 2011) and 

491 redox-sensitive elements (Filippidi et al., 2016; Hennekam et al., 2014; Mercone et al., 2001; Tachikawa 

492 et al., 2015) (notably vanadium).

493 A synchronous S1 onset across the entire EMS – including the Adriatic - is a new element that 

494 corrects previous literature which inferred a delayed S1 onset of ca. 1ky in the Adriatic due to protracted 

495 ventilation during the early phase of the sapropel formation  (Rohling et al., 1997). In the 3.2 section 
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496 (Comparison between stratigraphic records from the southern Adriatic basin) we have further analysed the 

497 differences between our results and previous published studies from a stratigraphic point of view. Here we 

498 show how time differences are most likely the result of low-resolution age-depth models combined with 

499 gravity-driven processes (e.g., erosion, turbidites) which likely altered the original stratigraphy.

500 In light of this new new insightinformation, we postulate that the synchronous onset of sapropel 

501 S1 over the entire EMS (Fig. 10) necessarily involves the Levantine Intermediate Water (LIW) (Fig. 12) 

502 which is the binding element of the eastern Mediterranean thermohaline circulation (Millot, 1999). More 

503 specifically, we suggest that the most plausible scenario to explain (i) the coeval S1 onset and (ii) the 

504 sudden weakening of the NAdDW must be related to the freshening of the south-eastern Mediterranean 

505 Sea. According to our hypothesis, because the salty LIW exerts first-order control on the NAdDW 

506 formation by pre-conditioning the northern Adriatic waters (Vilibić and Orlić, 2002; Vilibić and Supić, 

507 2005) before the winter cooling, we infer that the freshening of the Levantine Sea during the African 

508 Humid Period  must have considerably reduced the deep-water formation in the northern Adriatic Sea 

509 eventually leading to the deep-water anoxia (Fig. 12b).

510 To test our hypothesis (Fig. 12b) and in particular the link between the south-eastern 

511 Mediterranean region and Adriatic Sea, we have compared our data with a recent reconstruction of the 

512 Nile River discharge based on the Ba/Ca ratio measured on Globigerinoides ruber (Weldeab et al., 2014) 

513 (Fig. 7f6f). The Ba/Ca record essentially reflects the degree of the freshening of the Levantine surface 

514 waters as a function of the African monsoon extent (Weldeab et al., 2014). We found that the maximum 

515 freshwater supply to the Levantine Sea (ca. 10 cal ky BP) indeed corresponds to the temporarily NAdDW 

516 shutdown (i.e., drop in the inner-shelf taxa and SS, Fig. 7 6 d, e) and the corresponding S1 onset in the 

517 Adriatic Sea (Fig. 7 6 a, b, c and 8 7 a, b, c).

518 Furthermore, considering that the formation of the Adriatic Eastern Mediterranean Deep Water 

519 sourced from the Adriatic EMDW (EMDWAdriatic) largely depends on the NAdDW (Vilibić and Orlić, 

520 2002; Vilibić and Supić, 2005) (Fig. 1), our results imply that the reduced deep water formation in the 
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521 Adriatic had in turn drastically hampered the ventilation of those deep regions under the direct influence 

522 of the EMDWAdriatic which today such as the Ionian basin (Fig. 12b). Today the Adriatic represents the 

523 major cold and EMDW dense water source of for the EMS (Klein et al., 2000). although  under certain 

524 climate conditions (commonly known as the Eastern Mediterranean Transient, EMT), the south-eastern 

525 surface waters can become particularly salty and generate large volumes of dense water (Lascaratos et al., 

526 1999; Malanotte-Rizzoli et al., 1997). The EMS freshening certainly had important effects on both 

527 NAdDW and EMT.

528 Recent studies have also pointed out that that the progressive stagnation of the EMS occurred 

529 prior to the African Humid Period due to the inflow of less saline North Atlantic waters into the 

530 Mediterranean via the Gibraltar strait (Béthoux and Pierre, 1999; Grimm et al., 2015; Rohling and Bryden, 

531 1994; Rohling et al., 2015). Therefore, the peak of the African monsoon occurred over a period already 

532 characterized by enhanced water-column stratification. Evidence of weakened deep-water ventilation prior 

533 to S1 has been well documented in the Levantine Basin (Tachikawa et al., 2015)15, which is consistent 

534 with our record in the Adriatic basin (notably ST04-1; Fig. 98). The presence of pre-sapropel conditions in 

535 our deepest record further highlights the coherence between the Adriatic and the rest of the EMS as well 

536 as the importance of pre-freshening as a prerequisite for the sapropel formation (Grimm et al., 2015).

537 Among other relevant similarities with the south-eastern Mediterranean sapropels, it is worth 

538 mentioning that the S1 termination in the Adriatic was coherent with the progressive reoxygenation 

539 observed in the Levantine and Aegean sediments (Fig. 10). Specifically, according to the foraminifera-

540 based oxygen index (values > 0.5) (Schmiedl et al., 2010) in these regions, the ventilation was initially 

541 confined within the uppermost water column and gradually increased water depth with time. A similar 

542 water depth- trend characterized our Adriatic records. Using the same oxygen-index threshold as for the 

543 Aegean and Levantine basins (Schmiedl et al., 2010), the re-oxygenation over the slope (SA03-1, Fig. 

544 8b7b and 10) occurred much earlier than  the deep benthic environment (ST04-1, Fig. 8a7a and 10). In 

545 line with the bottom- current proxies (Fig. 7 6 d, e), these results suggest a gradual reactivation of the 

Comment [TT1]:  
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546 NAdDW. The reason for the observed bathymetric trend across all Eastern Mediterranean basins probably 

547 involves the gradual weakening of the African monsoons (Weldeab et al., 2014) (Fig. 7f6f) coupled with 

548 the sea surface cooling towards the end of the sapropel (Marino et al., 2009; Siani et al., 2013).

549

550 4.5 Comparison with published stratigraphic records from the southern Adriatic basin

551 Our results revealed Aa synchronous S1 onset across the entire EMS which  – includes ing the 

552 Adriatic setting.  This- is a new element that corrects previous literature which inferred a delayed S1 onset 

553 (of ca. 1ky) in the Adriatic due to protracted ventilation during the early phase of the sapropel formation  

554 (Rohling et al., 1997). In the 3.2In this section, we revisit published studies dealing with the Adriatic S1 to 

555 evaluate the stratigraphic coherence with our results and, thus, further understand the origin of this 

556 discrepancy. section (Comparison between stratigraphic records from the southern Adriatic basin) we have 

557 further analysed the differences between our results and previous published studies from a stratigraphic 

558 point of view. Here we show how time differences are most likely the result of low-resolution age-depth 

559 models combined with gravity-driven processes (e.g., erosion, turbidites) which likely altered the original 

560 stratigraphy.

561 Prior Adriatic studies focused on the following cores: IN68-9 (Jorissen et al., 1993; Rohling et al., 

562 1997; Van Straaten, 1970), MD90-197 (Mercone et al., 2001; Mercone et al., 2000; Siani et al., 2013; 

563 Siani et al., 2000; Siani et al., 2010) and AD91-17 (Capotondi et al., 1999; Giunta et al., 2003; Sangiorgi 

564 et al., 2003) (Fig. 1 and 11). For the comparison with our records, we selected five main widespread 

565 bioevents commonly observed in the Adriatic Sea (Fig. 11) (Asioli et al., 1999; Narciso et al., 2012; Piva 

566 et al., 2008; Rohling et al., 1997; Santacroce et al., 2008; Trincardi et al., 1996). Bioevents include:

567 - bioevent I (top GS-1/YD): abrupt increase of G. ruber

568 - bioevent II: older peak of G. inflata

569 - bioevent III: younger peak of G. inflata

570 - G. ruber maximum peak of frequency in S1a
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571 - Globoturborotalita rubescens peak in S1a

572 Among these cores, IN68-9 core (i.e., core 362 in previous publications (Van Straaten, 1970) is 

573 particularly relevant because our current understanding of the S1 onset is largely based on this record 

574 (Rohling et al., 1997; Rohling et al., 2015). IN68-9 was collected at 1234 m water depth (Fig. 11a) and all 

575 the aforementioned biostratigraphic events (source PANGEA, doi:10.1594/PANGAEA.407648) are 

576 present and stratigraphically coherent with ST04-1 (bioevent I corresponds in this core to the ecozones I/II 

577 boundary) (Fig. 11a). Another similarity includes the ash layer at cm 128-130. Geochemical analysis in 

578 IN68-9 defined this event as Mercato tephra (Calanchi and Dinelli, 2008) which is positioned just below 

579 the increase of G. rubescens. Although the geochemical fingerprint is not available for ST04-1, the age 

580 and the stratigraphic position suggest that this ash layer is likely Mercato tephra.

581 Despite the overall coherence between IN68-9 and ST04-1 from a stratigraphy point of view, 

582 bioevents in IN68-9 exhibit a much younger age compared to ST04-1, especially within S1a. To further 

583 investigate this discrepancy, we performed a new picking of planktonic foraminifera directly on IN68-9 

584 close to the G. ruber peak (137-138 cm). It was possible to date this interval in core IN68-9 because two-

585 thirds of the original core are currently stored at ISMAR Bologna. The new radiocarbon date (9030±30 yr 

586 BP 14C age.; NOSAMS reference OS-127850; Table 1) turned out much older than the age assessed with 

587 the previous age-depth model (ca. 8110 yr BP 14C age) (Rohling et al., 1997) but remarkably consistent 

588 with the chronology of ST04-1. 

589 The reason for this offset (ca. 900 y) between the new radiocarbon date and the previous age-depth 

590 model (Rohling et al., 1997) might explain why  the Adriatic sapropel S1 exhibited a delayed onset. It is 

591 worth mentioning that the age-depth model of IN68-9 within the S1 deposit, essentially relies only on two 

592 radiocarbon dates (Rohling et al., 1997). Thus, it possible that the problem might derive from the lowest 

593 radiocarbon date (UTC-501, 155.5-157.5 cm, 9280±180 yr BP 14C) which is somehow erroneously too 

594 young. To test this hypothesis, we re-modelled in Oxcal the sediment accumulation of core IN68-9 using 

595 the new radiocarbon date (OS-127850) and the bioevents as used in our records (supplementary material). 
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596 The goal of this exercise was to examine the agreement between the model (prior) and the observational 

597 data (likelihood) which is quantitatively expressed with the “agreement index”. As expected, test UTC-

598 501 exhibited a low agreement index and, thus, turned out being an outlier. Furthermore, the agreement 

599 index would further decrease considering that the suspicious radiocarbon test (UTC-501) corresponds to a 

600 mixture of benthic foraminifera (Jorissen et al., 1993). In fact, if we applied a larger R respect to 

601 planktonic foraminifera, the new reservoir correction would make the calibrated age even younger and, 

602 thus, less coherent with the rest of the dates.

603 Core MD90-197 was collected at 1010 m water depth (Fig. 1). Three curves of planktonic species 

604 (G. ruber, G. inflata and Globigerinita glutinata) were visually extrapolated based on the plot of 

605 planktonic species vs age previously published (Siani et al., 2010). For this core only two bioevents of 

606 core ST04-1 were recognized: Bioevent I and II. The G. ruber peak is present but it is coeval with the 

607 tephra layer E1 (Gabellotto-Fiumebianco) located close to the S1 interruption and proved to be younger 

608 than Mercato tephra (Caron et al., 2012; Marchini et al., 2014). What is striking about this core is the 

609 relatively thin S1a compared to S1b which is unusual for S1 (Mercone et al., 2001; Mercone et al., 2000). 

610 This might reflect either a condensed interval or a hiatus above the G. glutinata peak. To test this 

611 hypothesis, we compared the V/Al record that displays a large peak right after the S1 onset in both 

612 Adriatic basin (ST04-1) and slope (INVAS12-10) (Fig 11b). This peak is also present in other south-

613 eastern S1 deposits (e.g., LC21, Aegean Sea (Mercone et al., 2001). The XRF analyses were performed 

614 every cm in MD90-197. However, despite the high resolution, the V/Al peak is not visible (Mercone et al., 

615 2001) (Fig. 11b). An examination of all radiocarbon dates available for MD90-197 (both mixed planktonic 

616 foraminifera and monospecific tests (Mercone et al., 2000) reveals a drastic drop in sedimentation rate 

617 where the V/Al is expected. This suggests once again either a condensed unit or a hiatus. Even considering 

618 the error associated with pulling together monospecific radiocarbon tests and mixed planktonic species 

619 (these latter integrate the signal of a thicker water column), the apparent drop of sedimentation seems to 

620 be still evident in the radiocarbon data (Mercone et al., 2000). Unfortunately, benthic foraminifera are not 
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621 available for MD90-197 which hampers the direct comparison with our record. For example, the C. bradyi 

622 observed in both ST04-1 and IN68-9 at the base of S1a could have provided additional important clues.

623 Finally, core AD91-17 was collected in the southern Adriatic at 844 m water depth (Giunta et al., 

624 2003, Marchini et al., 2014). Two curves of planktonic foraminifera (G. ruber and G. inflata) were 

625 reported in Fig. 1 based on previous studies (Capotondi et al., 1999). Tephra-stratigraphy of core AD91-17 

626 indicates that the reconstructed sapropel onset (190-191 cm) corresponded to the uppermost limit of 

627 Mercato tephra (Marchini et al., 2014). However, Mercato tephra is stratigraphically positioned ca. in the 

628 middle of S1a, above the G. ruber peak in both IN68-9 (Calanchi and Dinelli, 2008; Rohling et al., 1997) 

629 and ST04-1 (this study). The fact that this large G. ruber peak below Mercato is not visible in AD91-17 

630 (Fig. 11a) suggests that the lower portion of the S1a is missing. In fact, previous publications have 

631 highlighted the presence of a turbidite just below Mercato between cm 200 and 196 (Giunta et al., 2003) 

632 which further support the hypothesis of a possible stratigraphic gap.

633

634

635 4.65 Enhanced primary productivity or diagenetic signal?

636 Alternatively, the deposition of the Adriatic sapropel could have been an expression of the high-

637 nutrient supply via freshwater discharge. Under these circumstances, the increased demand of benthic 

638 oxygen, necessary to degrade the freshly deposited marine phytodetritus, eventually resulted in anoxic 

639 sediments.

640 In this study, we used lignin ‒ the second most abundant macromolecule on Earth after cellulose ‒ 

641 as a tracer of freshwater discharge because it has been shown that terrestrial organic biomarkers (notably 

642 sediment-normalized concentrations) increase during sapropel deposition (Bouloubassi et al., 1999; 

643 Gogou et al., 2007) (Fig. 1112). In northern Mediterranean borderlands, the abundancethis evidence of 

644 terrestrial biomarkers has been widely used to infer the link between enhanced freshwater supply and 

645 sapropel formation (Bouloubassi et al., 1999; Gogou et al., 2007). Indeed, our results show that lignin 
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646 increased at the S1 onset but, in all settings at the same time, the lignin content markedly diminishes with 

647 decreasing water depth (Fig. 1112). While previous studies mainly drawn their conclusions based on deep 

648 sapropel beds (Bouloubassi et al., 1999; Gogou et al., 2007), in this study we took the opportunity to focus 

649 also on shallow water equivalent deposits which revealed this water depth trend. However, Aa pattern like 

650 this is  unexpected because typically lignin concentration diminishes with increasing distance from the 

651 river outlets in all modern continental margins, including the Adriatic (Bröder et al., 2016; Gordon and 

652 Goñi, 2003; Tesi et al., 2008; Tesi et al., 2007). Therefore, in our hypothesis, lignin concentration reflects 

653 post-depositional degradation efficiency rather than original river input.  

654 In this scenario, early diagenesis during burial is limited in the deep basin where anoxic sediments 

655 hamper the complete OC breakdown including the terrestrial fraction. This would explain the relatively 

656 high lignin content in the deepest station during S1 as well as the similarities between lignin content and 

657 bulk OC (Fig. 7 6 a, b, c and 1112). Taken together, our results indicate that terrestrial biomarkers in 

658 sapropel beds do not necessarily reflect a primary signal (river input) but rather a secondary signal 

659 (diagenesis) as observed for other “non-conservative” variables measured in sapropel bedss such as 15N, 

660 pollen assemblages as well as other organic biomarkers (Cheddadi and Rossignol‐Strick, 1995; Langgut et 

661 al., 2011; Versteegh et al., 2010). Another recent example is the 15N whose depleted isotope composition 

662 has been interpreted for a long time as a sign of enhanced primary productivity (Calvert et al., 1992). 

663 Recent works showed that the lack of isotopic fractionation during early diagenesis is essentially the 

664 reason why sapropel beds display depleted 15N signatures (Möbius et al., 2010; Sachs and Repeta, 1999). 

665 Thus, as observed for the terrestrial biomarkers, the 15N signature in sapropel beds reflects a preservation 

666 signal (diagenesis) rather than the original marine OC fingerprint.

667

668 Given the evident complications with the use of terrestrial biomarkers we have looked into the 

669 literature (Combourieu-Nebout et al., 2013; Magny et al., 2012; Spötl et al., 2010) to find indications of 

670 enhanced river discharge from the northern Mediterranean borderlands to justify the sapropel onset at 
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671 around 10 cal ky BP. The collective evidence based on speleothems, pollen data and debris flow fans and 

672 lake levels suggests precipitation anomalies around 7.3-8.2-7.3 cal. ky BP (Spötl et al., 2010; Zanchetta et 

673 al., 2007) over the northern Mediterranean Italian drainage basins regions (Alps and northern Apennine 

674 chain)(i.e., Alps). (Magny et al., 2013)The wetter conditions during this period might have further 

675 weakened the NADW during the sapropel deposition and stimulated the primary productivity. However, 

676 other studies based on lake levels suggest conditions not particularly wet during the same period in 

677 northern Italy  (Magny et al., 2013). Despite the lack of agreement, (Spötl et al., 2010; Zanchetta et al., 

678 2007)it seems evident that this time interval (8.2-7.3 cal. ky BP) (Spötl et al., 2010; Zanchetta et al., 2007) 

679 .is more  which is more consistent with the second phase of sapropel S1 (S1b) rather than its the onset (ca. 

680 10 cal ky BP).  In conclusions, there is no evidence in the literature or in our river-proxy data suggesting 

681 that S1 in the Adriatic was initiated by enhanced freshwater discharge from local rivers. By contrast, the 

682 synchronous onset across the entire EMS suggests a wide-basin, physical-driven mechanism such as the 

683 abrupt weakening of the LIW which hampered the dense water formation over the entire Eastern 

684 Mediterranean Sea. 

685

686

687 Conclusions

688 This study has redefined the conditions under which the Adriatic S1 formed. Our multifaceted 

689 study based on integrated ecological, organic and inorganic parameters indicates that the weakening of the 

690 NAdDW Northern Adriatic Deep Water exerted first-order control on the development of anoxic bottom 

691 waters in the Adriatic as well as nearby deep basins such as the Ionian Sea. The emerging picture suggests 

692 a chain of events in which the intensification of monsoon precipitation over North Africa followed by the 

693 weakening of the LIW Levantine Intermediate Water ultimately suppressed the Northern Adriatic Deep 

694 Water formation whichNAdDW leading to the S1 formation in the Adriatic and in those basins further 

695 south under, consequently, hampered the the direct influence of the Eastern Mediterranean Deep 
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696 WaterEMDWAdriatic (e.g. Ionian basin, developmentFig.11). As a result, the expression of the monsoon-

697 fuelled freshening was a synchronous stagnation S1 formation across the entire Eastern Mediterranean Sea 

698 including the Adriatic. Finally, our results rule out the increase of nutrient supply as the major driver for 

699 the S1 formation in Adriatic sediments.

700
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949

950 Captions

951

952

953

954

955

956 Figure 1. Map of the study area in the Adriatic Sea. Coring sites are displayed as filled dots and labelled 

957 AMC99-1 (260 m water depth), SA03-1 (567 m water depth), INVAS12-10 (570 m water depth) and 

958 ST04-1 (1085 m water depth) respectively. Arrows show the main water masses which include the 

959 Levantine Intermediate Water (LIW, red, main path, and dashed red, northward intrusion with large inter-

960 decadal variability), North and South Adriatic Deep Water (NAdDW and SAdDW,, blue) and the Eastern 

961 Mediterranean Deep Water (EMDW, green). Dashed line roughly displays the position of the shoreline at 

962 the S1 onset. The black line represents the location of the depth profile (Fig. 2a). The upper right inset 

963 shows the main path of the LIW in the eastern and central Mediterranean Sea and the Nile runoff input
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979 Figure 2. Chirp profiles of the coring sites along the shelf-basin continuum. (a) The depth profile graph 

980 displays the general location of the sediment cores in respect to the dominant water masses (NAdDW and 

981 LIW). Seismic profiles through the three coring sites: (b) shelf-adjacent (mid-Adriatic depression, 

982 AMC99-1), (c) slope (sediment wave field, SA03-1 and INVAS12-10) and (d) deep basin (ST04-1).
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1009 Figure 3. Sediment cores from the Adriatic Sea (Fig. 1 and 2). Lithology, photo, false colours and XRAY 

1010 of AMC99-1 (a), photo non available);, INVAS12-10 (b); and ST04-1 (c).
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1031 Figure 4. Down-core biostratigraphy of ST04-1, SA03-1 and AMC99-1. Four bioevents were used for the 

1032 age-depth model: I (top YD, blue line), II (older peak G. inflata, light green), III (younger peak G. inflata, 

1033 dark green), IV (last occurrence G. inflata, red line). For further details on the bioevents see Table 1 and 

1034 method section. The figure shows also the correlation between twins core Core SA03-1 and INVAS12-10. 

1035 collected in the sediment wave field. Cross-correlation between twin cores relays on bioevents and tephra 

1036 (magnetic susceptibility anomalies). Events in chronological order include: top of the Younger Dryas, two 

1037 Globorotalia inflata peaks (during the Pre Boreal), peak of Cassidulinoides bradyi, a large magnetic 

1038 susceptibility peak marking a tephra layer, two G. inflata peaks (during S1 break and S1b, respectively) 

1039 and the last Occurrence of G. inflata
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1061 Figure 5. Bayesian age-depth model of Adriatic records (median, 1 and 2). Filled symbols (circles, 

1062 squares and diamonds) show the radiocarbon dates used for the Bayesian model. Dark gray areas display 

1063 distinct bioevents used to increase the model resolution and synchronize the records. The model shows 

1064 good agreement between bioevents and the new radiocarbon dates of monospecific tests. For further 

1065 details about the age-depth model see the method section. The paleoceanographic (and stratigraphic) 

1066 events were identified independently in each core; therefore, all dates in each core are consistent and 

1067 independent as no age is exported from one core to another.
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1085 Figure 6. Comparison between sediment cores collected in the southern Adriatic basin.  ST04-1 (this 

1086 study), IN68-9 (Rohling et al., 1997), MD90-197 (Mercone et al., 2001; Siani et al., 2010) and AD90-17 

1087 (Capotondi et al., 1999). A) Location of the sediment cores. B) Core description, biostratrigraphy and 
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1088 bioevents (coloured lines). C) Core description and V/Al ratio (MD90-197 vs ST04-1). Radiocarbon dates 

1089 shown in the figure refer to uncalibrated data (14C yBP) for a direct comparison.
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1103

1104

1105 Figure 76. Sapropel S1 along the Adriatic shelf-basin continuum and external environmental forcings. 

1106 Organic carbon (OC) content of (a) ST04-1, (b) INVAS12-10 and (c) AMC99-1. Note the different scale 

1107 of y-axes. Bottom current proxesproxies: abundance of reworked inner-shelf foraminifera (d) and sortable 
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1108 silt (e) over the slope (SA03-1). (f) Nile runoff proxy: Ba/Ca of Globigerinoides ruber (Weldeab et al., 

1109 2014). Light and dark grey areas denote pre-sapropel sediments, the S1 boundaries and the sapropel S1 

1110 break based on the OC content of ST04-1.
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1124
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1126

1127

1128

1129 Figure 87. Seafloor oxygen content and reducing conditions during the sapropel S1 deposition in Adriatic 

1130 sediment along the shelf-basin continuum. Foraminifera-based oxygen index (OI, (Schmiedl et al., 2010) 
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1131 of (a) ST04-1, (b) SA03-01 and AMC99-1). Value of 1 refers to fully oxygenated conditions while 0 

1132 represents azoic environment, respectively. Note, OI of AMC99-1 is based on intermediate infaunal 

1133 foraminifera. Authigenic vanadium enrichment (V/Ti) of (ad) ST04-1, (be) SA03-01 and (f) AMC99-1. 

1134 Light and dark grey areas show pre-sapropel sediments, the S1 boundaries and interruption based on the 

1135 OC content of ST04-1 (see Fig. 16).
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1154 Figure 98. Pre-sapropel and sapropel S1 onset in the Adriatic basin (ST04-1, 1085 m). (a) Organic carbon 

1155 (OC) and oxygen index. (b) Abundance of deep and intermediate infaunal foraminifera and authigenic 

1156 vanadium enrichment (V/TiO2). Light grey area shows the azoic environment.
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1177

1178

1179 Figure 109. Distribution of manganese and sulfur during the S1 deposition in Adriatic sediments along 

1180 the shelf-basin continuum. Authigenic manganese enrichment of (a) ST04-1, (b) INVAS12-10 and (c) 

1181 AMC99-1. Authigenic sulfur enrichment of (d) ST04-1, (e) INVAS12-10 and (f) AMC99-1. Light and 

1182 dark grey areas show pre-sapropel sediments, S1 boundaries and interruption based on the OC content of 

1183 ST04-1 (see Fig. 6). . Light and dark grey areas show the S1 boundaries and interruption based on the OC 

1184 content (see Fig. 1). Note the different scale of y-axes.

1185

1186

1187 Figure 10. Benthic ecosystem changes over water depth during the sapropel S1 deposition according to 

1188 the foraminifera-based oxygen index. Changes were defined using the oxygen index threshold according 

1189 to Schmiedl et al. (2010). Values less than 0.5 indicate the collapse of the benthic ecosystem while values 

1190 more than 0.5 indicate the recovery of the benthic ecosystem. Solid line and grey area show mean and 

1191 standard deviation of the S1 onset, respectively. Dashed line (interpolation water depth vs time) exhibits 

1192 the progressive ventilation with increasing water depth over time. Aegean and Levantine data from 

1193 Schmiedl et al. (2010).

1194  

1195 Figure 611. Comparison between sediment cores collected in the southern Adriatic basin.  ST04-1 (this 

1196 study), IN68-9 (Rohling et al., 1997), MD90-197 (Mercone et al., 2001; Siani et al., 2010) and AD90-17 

1197 (Capotondi et al., 1999). A) Location of the sediment cores. B) Core description, biostratrigraphy and 

1198 bioevents (coloured lines). C) Core description and V/Al ratio (MD90-197 vs ST04-1). Radiocarbon dates 

1199 shown in the figure refer to uncalibrated data (14C yBP) for a direct comparison.
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1216 Figure 121. Terrigenous organic carbon concentration during the sapropel S1 deposition in Adriatic 

1217 sediments along the shelf-basin continuum. Lignin concentration of (a) ST04-1, (b) INVAS12-10 and (c) 

1218 AMC99-1. Light and dark grey areas show the S1 boundaries and interruption based on the OC content 

1219 (see Fig. 1). Light and dark grey areas show pre-sapropel sediments, S1 boundaries and interruption based 

1220 on the OC content of ST04-1 (see Fig. 6).. Note the different scale of y-axes.
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1225

1226
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1232

1233

1234

1235

1236

1237

1238 Figure 12. Cartoon of the thermohaline circulation: (a) modern conditions and (b) during the freshening 

1239 of the Eastern Mediterranean Sea via the Nile (b). As the precipitation increases over North Africa, the 

1240 Levantine Intermediate Waters (LIW) progressively decreases. This is turn hampers the preconditioning 

1241 North Adriatic Deep Water with cascade effects on the Eastern Mediterranean Deep Water formation. The 

1242 expression of the monsoon-fuelled freshening was a synchronous S1 formation across the Eastern 

1243 Mediterranean Sea including the Adriatic.

Table S1. Dated levels used for the Bayesian age-depth model of core AMC991, INVAS12-10, ST04-1. The table contains a new  
radiocarbon  date of core  IN68-9 as well.
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Lab. #
Core depth 

(cm)
Sample type

14C age 
(yBP)

Modelled 
age 

(median, 
cal yBP)

-2 +2 Reference

AMC99-1 (260 m w.d.)

Poz-16133 21-22
Cibicidoides  
pachyderma

1405 ± 30 629 720 530 Piva et al. (2008)

Poz-16134 117-118
Cibicidoides  
pachyderma

2880 ± 40 2208 2331 2073 Piva et al. (2008)

Poz-16135 222-223
Cibicidoides  
pachyderma

4200 ± 40 3889 4065 3724 Piva et al. (2008)

Poz-16137 258-259 mixed planktic 4570 ± 50 4630 4798 4464 Piva et al. (2008)

CAMS-33373 323-324 mixed planktic 5880 ± 60 6104 6265 5944
Bioevent IV, LO G. inflata 

(core RF93-30); (Trincardi et 
al., 1996)

OS-104703 374-375.5
Globigerinoides 

ruber
6720 ± 50 7046 7201 6906 this study

OS-104710 416-417
Globigerinoides 

ruber
7320 ± 60 7668 7805 7553 this study

OS-104283 470-471.5
Globigerinoides 

ruber
8230 ± 45 8565 8721 8420 this study

OS-104466 535-536
Globigerinoides 

ruber
9090 ± 35 9683 9856 9533 this study

Poz-16142 550-551 mixed planktic 9360 ± 50 10049 10184 9886
Bioevent III, Younger peak  
G. inflata (core SA03-1); 
(Favaretto et al., 2008)

Poz-16144 570-571 mixed planktic 9860 ± 60 10565 10727 10392
Bioevent II, Older peak  G. 

inflata (core SA03-1); 
(Favaretto et al., 2008)

CAMS-16305 610-611 mixed planktic 10450 ± 90 11301 11623 11112
Bioevent I, Top YD (core 
CM92-43); (Asioli et al., 

2001)

INVAS12-10 (570 m w.d.)

CAMS-33373 275-276 mixed planktic 5880  ±  60 6116 6277 5937
Bioevent IV, LO G. inflata 

(core RF93-30); (Trincardi et 
al., 1996)

OS-104282 305-306
Globigerinoides 

ruber
6450  ±  35 6833 7115 6647 this study

OS-104380 319-320
Globigerinoides 

ruber
7340  ±  30 7648 7760 7558 this study

OS-108068 327-328
Globigerinoides 

ruber
7530  ±  60 7864 7986 7725 this study

OS-104381 347-348
Globigerinoides 

ruber
8240  ±  35 8565 8721 8421 this study
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OS-104382 375-376
Globigerinoides 

ruber
9140  ±  35 9596 9982 9151 this study

Poz-16142 389-390 mixed planktic 9360  ±  50 10100 10232 9885
Bioevent III, Younger peak  
G. inflata (core SA03-1); 
(Favaretto et al., 2008)

Poz-16144 395-396 mixed planktic 9860  ±  60 10577 10768 10373
Bioevent II, Older peak  G. 

inflata (core SA03-1); 
(Favaretto et al., 2008)

CAMS-16305 413-414 mixed planktic 10450  ±  90 11301 11682 11088
Bioevent I, Top YD (core 
CM92-43); (Asioli et al., 

2001)

ST04-1 (1085 m w.d.)

CAMS-33373 80-81 mixed planktic 5880 ± 60 6103 6275 5925
Bioevent IV, LO G. inflata 

(core RF93-30); (Trincardi et 
al., 1996)

OS-104464 102-103
Globigerinoides 

ruber
6510 ± 30 6878 7011 6735 this study

OS-104378 113-114
Globigerinoides 

ruber
7160 ± 30 7521 7607 7425 this study

OS-104465 120-121
Globigerinoides 

ruber
7800 ± 35 8110 8254 7985 this study

OS-104281 139-140
Globigerinoides 

ruber
9040 ± 40 9562 9701 9455 this study

OS-107637 142-143
Globigerinoides 

ruber
9180 ± 40 9755 9916 9580 this study

Poz-16142 145-146 mixed planktic 9360 ± 50 10009 10181 9826
Bioevent III, Younger peak  
G. inflata (core SA03-1); 
(Favaretto et al., 2008)

Poz-16144 153-154 mixed planktic 9860 ± 60 10669 10842 10505
Bioevent II, Older peak  G. 

inflata (core SA03-1); 
(Favaretto et al., 2008)

OS-104379 154-155 Globorotalia inflata 10050 ± 45 10761 10949 10624 this study

CAMS-16305 169-170 mixed planktic 10450 ± 90 11442 11790 11165
Bioevent I, Top YD (core 
CM92-43); (Asioli et al., 

2001)

IN68-9 (1234 m w.d.)

OS-127850  137-138
Globigerinoides 

ruber
9030 ± 30

Not calibrated for direct comparison with previous studies 
Rohling et al. (1997) 

* For further details about biostratigraphy and bioevents see the method section in the main text
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In this section, we revisit the age-depth model originally presented by Rohling et al. 

(1997) using Oxcal. The new model allows for random fluctuations in sediment deposition 

(P_sequence) and benefits of a new radiocarbon date (monospecific planktonic test, G. ruber, 

reference OS-127850) (Table S1). In addition to the radiocarbon tests, the model relays on 

well-characterized, radiocarbon dated bioevents (I,II, III, IV) as specified in the main text and 

Table S1. Our overarching goal is to understand whether the offset (ca. 1ky) between our 

results and Rohling et al. (1997) is a consequence of the age-depth model constrain. The 

Oxcal script used to generate the model is reported below. Particular attention was given to 

the agreement index which measures the coherence between the model (prior) and the 

observational data (likelihood).  

Radiocarbon test UTC-501 (Table 1; Fig. S1,S2,S3) turned out having a low agreement index 

(ca. 4%) (Fig. S3) and thus considered as an outlier. Altogether, our analysis revealed that the 

offset derives from this radiocarbon value being relatively young. 

 

Table S1. Radiocarbon dates of core IN68-9 

Lab. # 
depth 

(cm) 
Sample 

14
C age (yr 

BP) 
Source 

UTC-500 11.5 benthic forams 3160 ± 120 Rohling et al. (1997) 

CAMS-33373 43 mixed planktic 5880 ± 60 
Bioevent IV, LO G. inflata (core RF93-

30); Trincardi et al. (1996) 

UTC-1607 54.5 mixed planktic 6390 ± 60 Rohling et al. (1997) 

OS-127850 137.5 Globigerinoides ruber 9030 ± 30 this study 

Poz-16142 143 mixed planktic 9360 ± 50 
Bioevent III, Younger peak  G. inflata 

(core SA03-1); Favaretto et al. (2008) 

Poz-16144 155 mixed planktic 9860 ± 60 
Bioevent II, Older peak  G. inflata (core 

SA03-1); Favaretto et al. (2008) 

UTC-501 156.5 benthic forams 9280 ± 180 Rohling et al. (1997) 

CAMS-16305 162.5 mixed planktic 10450 ± 90 
Bioevent I, Top YD (core CM92-43); 

Asioli et al. (2001) 

UTC-502 241.5 mixed planktic 13100 ± 200 Rohling et al. (1997) 
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Oxcal script 

Options() 

 { 

  BCAD=FALSE; 

 }; 

 Plot() 

 { 

  Curve("Marine13","Marine13.14c"); 

  Delta_R("DeltaR based on Calib", 136, 41); 

 

P_Sequence("variable", 1,1,U(-2,2)) 

   { 

Boundary("bottom") 

   {  

    z=242; 

   }; 

R_Date("IN68-9 241.5", 13100,200)  

{ 

z=241.5;  

}; 

R_Date("BIO I", 10450,90)  

{  

z=162.5;  

}; 

R_Date("IN68-9", 9280,180)  

{ 

z=156.5;  

}; 

R_Date("BIO II", 9860,60)  

{  

z=155; 

}; 



R_Date("BIO III", 9360,50)  

{ 

z=143; }; 

R_Date("IN68-9  137.5", 9030,30)  

{ 

z=137.5; }; 

R_Date("IN68-9 54.5", 6390,60)  

{  

z=54.5; }; 

R_Date("BIO IV", 5880,60)  

{ 

z=43;  

}; 

R_Date("IN68-9 10.5",3160,120) 

{  

z=11.5;  

}; 

 

Boundary(); 

  }; 

  }; 

 }; 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1. Likelihood probability distributions of calibrated radiocarbon dates Light and dark 

blue show 1 and 2, respectively. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2. Posterior probability distributions of calibrated radiocarbon dates Light and dark blue 

show 1 and 2, respectively 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3. Posterior probability distribution (dark grey) vs likelihood probability distribution 

(light gray) of test UTC-501.  
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The Adriatic S1 is coeval with the Eastern Mediterranean S1 deposits

The Adriatic S1 onset is synchronous with the shutdown of the NAdDW

African monsoons weakened the LIW which in turn hampered the NAdDW formation




