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Abstract 
Recent seismicity in and around the Gargano Promontory, an uplifted portion of the southern Adriatic 
Foreland domain, indicates active E-W strike-slip faulting in a region that has also been struck by large 
historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two 
decades show that the pattern of tectonic deformation along the E-W–trending segment of the Gondola Fault 
Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the 
Eocene-Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, 
however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the 
Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. 
Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the 
Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic 
potential of the system formed by these two faults has never been investigated in detail. Recent 
investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution 
seismic-stratigraphic data, have led to the identification of fold growth and fault propagation in Middle-
Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates 
that sediments deposited during the past ca. 450 ka were recurrently deformed along the E-W branch of the 
Gondola Fault Zone. 
We performed a detailed reconstruction and kinematic interpretation of the most recent deformation 
observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of 
the southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise-Gondola Shear 
Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a 
seismogenic behaviour. 
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1. Introduction 

 

Foreland basins are subject to long-term tectonic evolution, display marked structural segmentation 

and can be dissected by tectonic lineaments of variable extent originating from re-activation of inherited fault 

systems (Allen et al., 1986). In some cases, foreland deformation can evolve into complex strike-slip fault 

systems that accommodate large-scale strain partitioning during active subduction and continental collision 

(Doglioni et al., 1994). Tectonic activity along these structures can bear the effects of the deformation along 

the thrust belt and thrust front, and may be associated with intense upper crustal seismicity. After the 

inception of a deformation zone within a foreland sector, reactivation may occur in response to a new stress 

field different from that active during thrusting. Therefore, foreland basins display deformational styles that 

may be especially difficult to interpret, being the expression of both the nature of different stress fields and 

of the original orientation of pre-existing faults and tectonic lineaments. This also implies a difficulty in the 

determination of the present activity and seismogenic potential of foreland deformation zones. 

Until just a few years ago, the active tectonics of the Italian peninsula was believed to be dominated 

by SW-NE oriented extension occurring along the axis of the Apennines (Montone et al., 2004) and 

responsible for severe earthquakes generated by large NW-SE normal faults (Galadini et al., 2001; Valensise 

and Pantosti, 2001; Fig. 1). 

The 2002 Molise earthquakes (M=5.8; notice that, if not differently reported, all magnitudes in this 

paper are from CPTI Catalogue; Gruppo di Lavoro CPTI, 2004; Fig. 1b), however, located to the NE of the 

Southern Apennine axis, supplied living evidence that in this sector of the chain (i.e. toward the Adriatic 

Foreland) NW-SE normal faulting gives way to relatively deep E-W, right-lateral seismogenic faults. Further 

to the east, in the Southern Adriatic Sea, very high-resolution seismic-stratigraphic data indicate that also the 

marine portion of the Adriatic Foreland is being actively deformed along E-W inherited tectonic structures 

(Ridente and Trincardi, 2006). This combined evidence suggests that the Southern Adriatic Foreland is 

affected by active E-W fault systems, both on- and offshore, buried and exposed, possibly organised in 

regional shear zones (Di Bucci and Mazzoli, 2003; Valensise et al., 2004; both with references). 

Major E-W–oriented shear zones have been singled out roughly between the latitudes 40°30’N and 

42°30’N (Favali et al; 1993; Doglioni et al., 1994). Among them, the Molise-Gondola Shear Zone (MGSZ) 
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has a clear E-W structural trend and is positively seismogenic in its western-most part (Di Bucci et al., 2006, 

and references therein; Fig. 1a). This shear zone, whose present activity is interpreted as due to the 

reactivation of an inherited zone of weakness, includes (from west to east) the source region of the 2002 

Molise earthquakes, that of the 1627 Gargano earthquake, the Mattinata Fault on the mainland, and the 

Gondola Fault Zone offshore (Fig. 1). In spite of the detailed studies concerning each strand of the MGSZ, 

an integrated analysis of its onshore and offshore parts is still lacking, except for the general perspective 

provided by the analogue models of the entire shear zone (Di Bucci et al., 2006). 

While the existence of E-W–oriented seismogenic faults in the Molise area is a newly acquired 

notion, the eastward extent and the geodynamic relevance of the offshore counterpart of the Mattinata Fault, 

i.e. the Gondola Fault Zone, have long been recognized (Finetti, 1984). However, the present activity of the 

Gondola Fault Zone is poorly constrained if compared with the rest of the MGSZ. Based on high-resolution 

seismic-stratigraphic data, Ridente and Trincardi (2006) provided the first direct evidence for Late 

Quaternary deformation. 

Although the Mattinata and Gondola faults may appear as two portions of the same system extending 

onshore and offshore (e.g., Piccardi, 2005), the assumption of a coupled long-term evolution and of a similar 

behaviour under a given stress field is not straightforward. In spite of their similar E-W strike and alignment, 

the different sectors of the MGSZ exhibit significant differences in their behaviour. In particular, moving 

from the offshore to the onshore, evidence for active tectonics along this regional shear zone is supplied by: 

· recent deformation (up to Late Holocene) along the Gondola Fault Zone (Ridente and Trincardi, 2006), 

where, however, significant instrumental seismicity has never been recorded, with the exception of a few 

moderate events north of the study area (Fig. 1b); 

· extensive surface evidence of activity (up to 50-60 km) along the Mattinata Fault (Piccardi, 2005; Tondi et 

al., 2005) and blind faulting along the Apricena Fault (Patacca and Scandone, 2004a), interpreted as a 

surficial splay of the MGSZ by Di Bucci et al. (2006; Fig. 1). Both these portions of the MGSZ are 

associated with the historical seismicity of the Gargano region, where also frequent instrumental seismicity 

occurs; 

· severe seismicity in the Molise region (2002 Molise earthquakes, M=5.8) revealing right-lateral strike-slip 

faulting on E-W blind faults. 
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To better constrain the recent deformation along the Gondola Fault Zone, we carried out an in-depth 

analysis of Middle-Upper Pleistocene and Holocene tectonic deformation along its E-W branch. We used a 

dense network of very high-resolution Chirp-Sonar seismic profiles (Fig. 2) to map in detail first order gentle 

fold systems and faults propagating in shallow deposits (locally up to the seafloor) that are Middle-Upper 

Pleistocene and Holocene in age. Our main result is the detailed reconstruction of the geometry, lateral 

continuity and activity of a ~50-km-long deformation zone corresponding to the E-W branch of the Gondola 

Fault Zone. We focus on the kinematic interpretation of this shallow deformation zone and compare our 

results with the active deformation and seismicity characterising other sectors of the MGSZ. We then (i) 

discuss the hypothesis that the MGSZ is being actively deformed as a whole and (ii) speculate about the 

possible seismotectonic implications of this activity. 

 

2. Geological setting 

 

2.1. Regional outline 

The Apennine fold-and-thrust belt is part of a Late Cenozoic accretionary wedge (e.g., Patacca and 

Scandone, 1989). All along the Italian peninsula, this wedge borders a foreland basin, shared with the Alpine 

and Dinaride Chains, whose southern portion corresponds with the Adriatic Sea and the Apulia region. These 

are part of “Adria”, an independent microplate or a promontory of the African plate, according to one of the 

most lively controversies in Mediterranean plate tectonics (Channell et al., 1979; Anderson, 1987; Catalano 

et al., 2001; Wortman et al., 2001). The Southern Apennines are formed by east-to-northeast verging thrust 

sheets (Fig. 1) deriving from palaeogeographic domains of alternating carbonate platforms and pelagic 

basins (Mostardini and Merlini, 1986). The outermost of these domains is represented by the Apulia 

Platform, a ~6 km-thick succession of shallow-water, Mesozoic carbonate rocks (Ricchetti et al., 1988; 

Ciaranfi et al., 1988). The lowermost ~1,000 m of this succession are made up of Triassic anhydrite-dolomite 

deposits (Butler et al., 2004), in turn underlain by fluvial-deltaic Permo-Triassic deposits (Bosellini et al., 

1993; Butler et al., 2004) and by an igneous/metamorphic Palaeozoic basement (Chiappini et al., 2000; 

Tiberti et al., 2005). The Apulia Platform and underlying basement are partly involved in the orogenic 

wedge, partly form the foreland inflected below the outer front of the Apennines, and partly form the 
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exposed foreland of the Apulia Peninsula, the Gargano Promontory and the Southern Adriatic Sea (Fig. 1a). 

For the sake of simplicity, we will simply refer to the Adriatic Foreland, regardless of the above domains.  

During the emplacement of the Apennines Chain (from Oligo-Miocene up to Early Pleistocene), the 

Adriatic Foreland was laterally partitioned into distinct tectonic domains (e.g., Ricci Lucchi, 1986). 

Partitioning was driven by a north-south differentiation of the westward-dipping Adriatic lithosphere, 

affected by significant discontinuities and thickness variations (Calcagnile and Panza, 1981; Royden et al., 

1987; Doglioni et al., 1994). Thrusting of the Southern Apennines progressed toward the Adriatic Foreland 

up to the beginning of the Middle Pleistocene, when motion at the wedge front is reported to have ceased 

(Patacca and Scandone, 2004b). A geodynamic change must have taken place around 800 ka BP, when SW-

NE extension became dominant along the axis of the Apennines (Cinque et al., 1993; Galadini, 1999; 

D’Agostino et al., 2001). This tensional regime is still active, though in the core of the foreland NW-SE 

horizontal compression accompanies the SW-NE tension (Vannucci and Gasperini, 2004). 

 

2.2. The onshore portion of the MGSZ 

The E-W striking MGSZ has been described as roughly running at the latitude 41°40’N and can be 

traced for a total length of at least 180 km (Di Bucci et al., 2006). Overall, the system appears as a ~15 km 

wide corridor from the Adriatic Sea to the core of the Apennines. Its onshore portion includes, from east to 

west, the Mattinata Fault, the Chieuti High, and the seismogenic faults responsible for the 2002 Molise 

earthquakes (Fig. 1). 

The Mattinata Fault cuts through the Gargano Promontory, an E-W elongated relief (maximum 

elevation ~1,000 m) along the flexural bulge of the Adriatic Foreland. It corresponds to a poly-phased belt of 

intense deformation, including several fault splays, and has been intensely investigated from a regional, 

structural and seismotectonic point of view (Finetti, 1982; Ortolani and Pagliuca, 1987; Funiciello et al., 

1988; Winter and Tapponier, 1991; Favali et al., 1993; Piccardi, 1998; 2005; Bertotti et al., 1999; Salvini et 

al., 1999; Billi and Salvini, 2000; Chilovi et al., 2000; Billi, 2003; Borre et al., 2003; Billi et al., 2007). Most 

investigators (but not all; see for example Billi et al., 2007) agree on a present-day right-lateral main 

component of motion, as confirmed by earthquakes focal mechanisms (e.g., 19 June 1975, Mw 5.1; 30 

September 1995, Mw 5.2; 29 May and 5 October 2006, Mw 4.6 and 4.2 respectively; these latter from 
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MEDNET, 2006; Fig. 1b), GPS data (Anzidei et al., 1996; Ferranti and Oldow, 2005), geomorphological and 

palaeoseismological investigations (Piccardi, 1998; 2005; Borre et al., 2003; Tondi et al., 2005). Moreover, 

the Mattinata Fault has been interpreted as the source of large historical earthquakes (e.g.,  493 A.D., Baratta, 

1901, quoted in Piccardi, 1998; 6 December 1875, Mw 6.1; Valensise and Pantosti, 2001; DISS Working 

Group, 2006), and instrumental seismicity is recorded within the uppermost 25 km of the crust throughout 

the Gargano Promontory (Chiarabba et al., 2005; Castello et al., 2006).  

Further to the west, the foreland plunges below the Pliocene-Pleistocene deposits filling the Bradanic 

Trough, the most recent foredeep of the Southern Apennines (Mariotti and Doglioni, 2000; Fig. 1). In this 

sector, an E-W ridge known as the Chieuti High (Casnedi and Moruzzi, 1978; Fig. 1) is preserved at the top 

of the buried Apulia Platform along strike of the Mattinata Fault. This structure, recently interpreted as an 

inherited push-up related to Cenozoic strike-slip motion (Patacca and Scandone, 2004a), is accompanied by 

WNW-ESE–striking, SSW dipping faults with a normal component of motion. Patacca and Scandone 

(2004a) interpret one of these faults, namely the Apricena Fault (Fig. 1), as the source of the 30 July 1627 

Gargano earthquake (M 6.7; Fig. 1b).  

West of the Chieuti High, where the Adriatic Foreland deepens to the west below the outer front of 

the Apennines, lies the source region of the 31 October and 1 November 2002 Molise earthquakes (Fig. 1). 

The two mainshocks of the Molise earthquake sequence had similar magnitude (Mw 5.8-5.7) and 

hypocentral depth (16-18 km; Vallée and Di Luccio, 2005), and both exhibit a pure strike-slip focal 

mechanism with right-lateral motion on E-W planes (Fig. 1b). Permanent surface deformation revealed by 

GPS is consistent with this kinematics (Giuliani et al., 2007) and the aftershock distribution also follows an 

E-W trend, yet no surface faulting was seen following these earthquakes. Overall, the 2002 earthquakes 

show that E-W striking faults belonging to the MGSZ are solicited under the present-day stress field.  

Large discrepancies are found in the literature concerning the amount of displacement along the 

MGSZ. For instance, Chilovi et al. (2000) suggest that the right-lateral displacement related to the most 

recent activity of the Mattinata Fault started in Late Pliocene. On this basis, they ascribe to the interval Late 

Pliocene-Present a horizontal displacement of 15 km, implying a slip-rate of about 6 mm/a. However, this 15 

km estimate was proposed by De’ Dominicis and Mazzoldi (1987) as a cumulative value for the entire slip 

history of the Gondola Fault Zone. In contrast, based on offset streams and on more subtle landscape 
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features, Piccardi (1998) proposes a horizontal component of the slip-rate in the order of 1 mm/a. Finally, 

analogue modelling of the MGSZ by Di Bucci et al. (2006) favours the hypothesis that the most recent and 

present-day activity of the MGSZ has accumulated a right-lateral displacement yielding a slip-rate close to 

1.3 mm/a, thus comparable with the figure proposed by Piccardi (1998). 

 

2.3 The offshore portion of the MGSZ: the Gondola Fault Zone 

The Gondola Fault Zone has been related to Cenozoic reactivation of pre-existing faults (e.g., 

Morelli 2002, and references therein). It is neither in direct continuity, nor perfectly aligned, with the 

Mattinata Fault, showing an underlap of ~20 km and right-stepping of ~5 km (Fig. 3). The Gondola Fault 

Zone includes several E-W and NW-SE fault segments dissecting the southern Adriatic continental shelf and 

slope (Fig. 3). These faults define an elongated structural high called “Gondola ridge” (Colantoni et al., 

1990; de Alteriis and Aiello, 1993). This buried structural high along the Gondola Fault Zone does not affect 

the seafloor topography along most of the its E-W portion, which extends ~70 km across the shelf (Ridente 

and Trincardi, 2002a; 2006). Conversely, a tectonic-related relief visibly affects the seafloor morphology 

down–slope (see bathymetry in Fig. 2), along the ~50 km-long NW-SE branch of the Gondola Fault Zone 

(de Alteriis, 1995; Tramontana et al., 1995). 

Several investigators discussed on whether the Gondola Fault Zone is still active and playing a role 

in the complex geodynamic evolution of the Adriatic Foreland (see Ridente and Trincardi, 2006, with 

references, for a review). Multi-channel seismic data highlight a regular Pliocene-Quaternary succession 

draping and sealing the faults and structural highs along the E-W branch of the Gondola Fault Zone. This 

circumstance should imply that deformation along the Gondola Fault Zone must have been active until the 

Late Pliocene or Early Pleistocene only (Colantoni et al., 1990; Argnani et al., 1993; de Alteriis and Aiello, 

1993; Tramontana et al., 1995). Faulted deposits below the base of the Pliocene-Quaternary show a vertical 

offset of 500-600 m and a downthrown northern side that accommodates a sedimentary succession thicker 

than that on the southern side (Fig. 3; De’ Dominicis and Mazzoldi, 1987). Moving toward the eastern tip of 

the E-W branch of the fault, the sedimentary cover north and south of the fault zone gradually attains the 

same thickness and, finally, becomes thicker in the southern block, due to a dip-slip displacement of ~200 m 
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of this side. This variability of the vertical component of displacement is interpreted as evidence for an 

overall transcurrent kinematics of the Gondola Fault Zone (Colantoni et al., 1990). 

Although multi-channel seismic profiles show the Gondola Fault Zone as draped and sealed by the 

Pliocene-Quaternary cover, Ridente and Trincardi (2006) have recently shown that these low-frequency data 

lack the resolution needed to determine whether mild recent deformation propagated through shallower 

deposits, even where the Pliocene-Quaternary cover displays flat-draping reflectors. When imaged by high-

resolution seismic profiles, Middle-Upper Pleistocene sequences appear indeed deformed by gentle folds and 

high-angle faults along the E-W branch of the Gondola Fault Zone (Fig. 4). These folds consist of two gentle 

anticlines and an interposed syncline; where present, north-dipping subvertical faults show vertical 

displacement. Locally, the displacement of Holocene deposits can be recognized up to the maximum 

flooding surface (Fig. 4), a reference layer that marks the flooding and starvation of the seafloor when sea-

level attained its modern highstand position, ~5.5 14C calibrated ka BP (Trincardi et al., 1996; Correggiari et 

al., 2001; Cattaneo et al., 2003). In some cases, faults even offset the seafloor. 

Historical and instrumental seismicity do not provide direct constraints for the activity of the 

Gondola Fault Zone, possibly owing to difficulties in retrieving information from offshore earthquake 

sources. With only a few exceptions, the CPTI catalogue locates all earthquakes onshore through an 

automatic procedure. Nevertheless, some events that are reported on the eastern coast of Gargano may have 

occurred offshore. For instance, the 10 August 1893 earthquake (Mw 5.4) severely damaged the port of 

Mattinatella (at the eastern end of the Mattinata Fault) and induced tangible effects on the environment, 

including offshore gas seepage and surface ruptures, described by contemporary witnesses (Baratta, 1894, 

reported in Boschi et al., 2000). Given the intensity distribution of this earthquake (Stucchi et al., 2007), its 

epicentre could well lie offshore the Gargano Promontory. 

 

3. High-resolution seismic and stratigraphic data 

 

The geophysical data used in this study consist of more than 10,000 km of Chirp-Sonar seismic 

profiles collected by ISMAR-CNR (Bologna) since 1997 (Fig. 2). Chirp-Sonar profiles were shot from 16 

hull-mounted transducers, using a 2-7 kHz sweep-modulated bandwidth (equivalent to a 3.5 kHz profiler) that 
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allows vertical resolution in the order of 50 cm and penetration up to 80-100 m. A 2 kJ Sparker, with vertical 

resolution in the order of few metres and penetration up to 150 m, was also used to investigate a broader 

depth interval. Track-line positioning was based on D-GPS navigation, assuring a position accuracy of ~10 

m, and transformed to geographic coordinates referred to the WGS84 datum. High-resolution seismic profiles 

allowed us to investigate the uppermost 100 m of the Late Quaternary succession in the Adriatic Sea.  

Seismic data were integrated with sedimentological and chronostratigraphic data from sediment cores 

(Trincardi et al., 1996; Asioli, 1996; Asioli et al., 1999; 2001; Ridente and Trincardi, 2005). In addition, a 71 

m-long borehole in the Central Adriatic Sea (drilled within the frame of “PROMESS 1” European Project) 

allowed the continuous recovery of Late Quaternary deposits. These deposits were dated using tephra layers, 

isotope curves, pollen spectra, 14C analyses, and foraminifera abundance (Asioli et al., 2005). Based on these 

chronostratigraphic data, the investigated interval spans the past ~450 ka (Middle-Upper Pleistocene and 

Holocene). This stratigraphic interval is made up of depositional sequences numbered progressively down-

section. On the shelf, these sequences are defined by erosional surfaces labelled ES1 to ES5, from top to 

bottom. The nature of these sequences and of their bounding surfaces reflects repeated sea level oscillations 

during alternating glacial-interglacial periods (Trincardi and Correggiari, 2000; Ridente and Trincardi, 2002a, 

b).  

Deposits above the last glacial erosional surface ES1 record the latest Pleistocene and Holocene post-

glacial sea level rise. Deposits below ES1 consist of four sequences that record deposition between 

subsequent Marine Isotope Stages (MIS) as in the following scheme: 

 

• Sequence 1 = MIS 2-6 (20 to 130-150 ka BP); 

• Sequence 2 = MIS 6-8 (130-150 to 230-250 ka BP); 

• Sequence 3 = MIS 8-10 (230-250 to 330-350 ka BP); 

• Sequence 4 = MIS 10-12 (330-350 to 430-450 ka BP). 

 

Individual sequences are up to a few tens of metres-thick, and are mainly composed by “forced-regression” 

units recording prolonged phases of sea level fall (Ridente and Trincardi, 2002a, b). The impact of tectonic 

activity on shallow-shelf deposition can be determined based on the nature of forced-regression deposits, 
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typically consisting of shallow water progradational units (Ridente and Trincardi, 2005). Because 

preservation of forced-regression deposits is strongly limited when there is little accommodation space 

available (Helland-Hansen and Martinsen, 1996), the thickness and internal architecture of such deposits are 

highly sensitive to syn-depositional deformation that can modify the accommodation space on the shelf. 

Superimposed on the eustatic sea level fall, changes in accommodation space induced by tectonic 

deformation impart variations in the thickness and internal geometry of each sequence (Ridente and 

Trincardi, 2002b). This tectonic control on the lateral variability of sequences results in a pre- and syn-

tectonic depositional pattern at a very local scale. In turn, this pattern allows recognizing where inherited 

tectonic lineaments have been active recently (Ridente and Trincardi, 2006).  

The four Middle-Upper Pleistocene sequences show dominant muddy composition, with thin beds of 

silt and fine sand occasionally occurring close to the erosion surfaces. Therefore, we considered the possible 

effect of differential compaction of the underlying Pliocene-Quaternary clastic sediments, that are thinner 

along the Gondola Fault Zone with respect to the surroundings (Colantoni et al., 1990). Preliminary results 

indicate differential values of compaction well below 10 m and far from the maximum displacement values 

measured for some of the faults described in Section 4. Therefore, we conclude that differential compaction is 

not sufficient to justify the development of the entire deformation belt along the Gondola Fault Zone, and that 

we are dealing with an active fault system. 

 

4. Active deformation along the E-W branch of the Gondola Fault Zone 

 

4.1. Distribution and lateral variability of the observed deformation 

In the study area, the deformation belt along the Gondola Fault Zone encompasses two major similar, 

asymmetric, gentle, north-verging anticlines. They are both characterised by E-W crest lines and by a ~7 km 

wavelength (Figs. 4 and 5). The asymmetry of the two folds becomes more evident from east to west, 

particularly along the northern fold. In figure 5, the anticlines are represented by the crest lines and the flex 

lines along the limbs, which may be affected by minor undulations (Fig. 6A, C). The northern anticline is 

over 50 km-long and has an amplitude of ~15 m (measured between the crest and the flexes), locally 

exceeding 20 m. The southern anticline is ~30 km-long and parallel to the eastern sector of the other 
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anticline. Both folds show an interlimb angle very close to 180°, the maximum real dip of the limbs being 

~1° (in particular for the northern ones). The northern limbs of both anticlines are slightly steeper and 

generally affected by faults that may also be seen along the axis of the northern anticline (Fig. 6C). The 

expression of these subvertical faults on seismic profiles varies from an abrupt offset of reflectors along 

distinct fault planes, to shearing of reflectors within tens of metres wide shear zones (Figs. 4 and 6). Fault 

planes are laterally discontinuous and in some cases are replaced or accompanied by tight folding (Fig. 7) 

and fluid-escape features (Figs. 4 and 6B), also observed elsewhere in the area (Fig. 5). 

The fault system that affects the northern anticline is very well developed; it frequently affects the seafloor 

and is formed by three branches (Fig. 5). The western branch is more than 8 km-long, has a main subvertical 

fault plane steeply dipping to the north and exhibits a vertical component of motion (Figs. 5 and 6A). Along 

this branch, the main slip surface is often accompanied by minor synthetic and antithetic faults. At its western 

tip, that corresponds to the westernmost tip of the entire system, the ~E-W fault seems to turn into minor 

N320°-striking faults. Fluid-escape features to the NNW of these minor structures seem to confirm a NW-SE 

general trend at the western termination of the entire system. Instead, no evidence of deformation is seen to 

the west of the western branch and related anticline. At the eastern tip of the western branch, the faults 

transfer the deformation to a set of minor undulations within the main anticline; these minor folds end in 

correspondence with the principal fault plane of the central branch, thus forming an overstep characterised by 

soft linkage, at least at the surface. 

The central branch is ~18 km-long (Fig. 5) and is characterised by a major subvertical plane, steeply 

dipping to the north, with a vertical component of motion. Along part of this branch, the main fold is box-

shaped with the main fault bounding its northern limb. In its western portion, the central branch is formed by 

a single fault (Fig. 6B), whereas in its eastern portion it transfers the displacement to another fault through an 

overstep area of hard linkage. Several minor synthetic and antithetic faults are associated with this second 

fault (Figs. 4 and 5). At the eastern tip of the central branch, all these faults transfer the deformation to a set of 

minor undulations and no additional detectable brittle structures occur within the limbs of the main anticline. 

Brittle deformation is seen again in the eastern branch (Figs. 5 and 6C), where the main fault is over 5 

km-long and only occasionally accompanied by minor faults. With respect to the main fold, and differently 

from the rest of the structure, the eastern branch of the fault system cuts obliquely the northern anticline and 
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eventually crosses its crest, thus suggesting that it is no longer related to the northern limb of the fold. The 

eastern tip of this branch is marked by the presence of few minor undulations. Deformation continues east of 

the area analysed in detail, where a reversal of the downthrown limb is observed (Figs. 5 and 8) and where the 

Gondola Fault Zone turns from E-W to NW-SE. 

Considering the entire northern fold, we notice that the flex line of the northern limb disappears in 

correspondence with the central branch of the fault system (Fig. 5 and 6B), being involved in the shear zone 

of the main fault. This is not seen in the southern fold, where faulting along the northern limb is only incipient 

(Fig. 4) and the continuity of the flex line is preserved. 

The overall geometry of the Gondola Fault Zone suggests a significant right-lateral component of 

motion. The mapped deformation pattern compares to many similar cases described in the literature (see, for 

instance, the description of the San Andreas Fault south of Brush Mountain in Christie-Blick and Biddle, 

1985). This set of features, formed by Riedel shears with minor vertical separation, connected through 

unfaulted sections where the anticline is best developed, support dextral slip. It is worth noting that the two 

main north-verging anticlines are not produced by normal-fault dragging. In some cases (Fig. 6C, southern 

anticline), the anticlines are not even associated with faulting, at least in the studied upper part of the 

sedimentary sequence. Indeed, the overall deformation pattern described can be explained by a NW-SE 

striking maximum horizontal stress. 

At a more local scale, near-fault hanging-wall deformation, consisting of a small undulation, 

accompanies the vertical displacement (Fig. 7). This too suggests that the observed faults may well slip with 

an unresolved lateral component of motion, also considering that 2D seismic sections rarely allow the 

horizontal component of displacement to be properly detected. 

 

4.2. Age of deformation 

As discussed in Section 3, the sequences involved in folding and faulting are precisely dated and this 

allows us to constrain in detail the Middle-Late Pleistocene and Holocene evolution of the analysed structures. 

The described pattern of gentle folding and shallow faulting indicates that sediments deposited during the past 

~450 ka were repeatedly deformed. This interpretation is supported by syn-tectonic pinch-outs and erosional 

unconformities occurring at different stratigraphic levels, particularly during the deposition of sequence 2 
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(~130-230 ka). Younger phases of tectonic growth during deposition of sequence 1 are less easily preserved, 

probably because the increasing tectonic relief promoted enhanced wave-base erosion in this outer shelf 

environment. 

With respect to the age of brittle deformation, faults can be subdivided into two groups; the first 

includes faults truncated by the Last Glacial Maximum erosional unconformity (ES1 erosion surface, ~20 ka), 

while the second includes faults that also offset the overlying uppermost Pleistocene and Holocene deposits 

and locally the seafloor. Faults belonging to this second group can be found in all three branches, thus 

supplying direct evidence for present-day activity of the entire structure. 

We also investigated syn-tectonic features within stratigraphic units older than those imaged on Chirp 

data by means of Sparker profiles recently acquired on the Gondola Fault Zone immediately to the east of the 

study area (Fig. 5), and still under processing. For example, the interpretation of the line drawing of Sparker 

Profile SE-64 (Fig. 8) allows the following observations: 

- anticlinal deformation affects depositional units older than sequence 4 (i.e., below ES5) and clearly impacts 

the setting of the continental slope; 

- syn-tectonic units (i.e., growth strata) commonly observed within sequence 2 to the west are clearly seen in 

this area also at the base of sequence 3 and below sequence 4, thus indicating fold growth at variable rates 

during the Middle-Late Pleistocene; 

- tectonically-driven unconformities within sequence 2 (between ES2 and ES3), that occur on the facing limbs 

of the two anticlines, correlate with several episodes of channel incision and filling on the seaward-sloping 

limb of the northern fold. This observation suggests that the recent tectonic growth may have enhanced outer 

shelf incision (this interplay has been recognised also further south along the margin, where it has evolved 

into the inception of the Bari Canyon; Ridente et al., 2007; Fig. 2); 

- sequence 3 and older units appear displaced by a fault coincident with the fold axis. Such fault is masked by 

fluid-escape features in its central part and affects the reflectors with an upward decreasing offset. In this area 

the southern limb is downthrown, in contrast with the rest of the Gondola Fault Zone, where the northern limb 

is downthrown. 

Finally, with regard to the vertical offset of reflectors all along the investigated fault zone, we remark 

that the amount of displacement observed varies in space and time (e.g., Fig. 6B); for the Late Pleistocene, it 
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ranges from a few to over 20 m. The highest values are observed along the central branch of the fault system. 

Where faults affect uppermost Pleistocene and Holocene deposits, displacement values are in the order of 1 

m and affect the ES1 surface (~20 ka BP), the maximum flooding surface (~5.5 ka BP) and the seafloor. The 

vertical component of the slip-rate estimated for displaced Middle-Upper Pleistocene deposits (with 

reference to ES3 and ES2) ranges between ~0.01 and ~0.16 mm/a. The vertical component of the slip-rate 

estimated for the uppermost Pleistocene-Holocene is a more constant ~0.05 mm/a, therefore within the range 

inferred for the Middle-Late Pleistocene. 

 

5. Discussion and conclusions 

 

We reconstructed in detail the geometry and activity of a ~50-km-long fault system affecting the 

offshore portion of the Adriatic foreland. This analysis does not include the NW-SE branch of the Gondola 

Fault Zone on the continental slope which is the object of ongoing studies. Nevertheless, our new results 

combined with literature data for the Mattinata Fault allow us to address the following outstanding questions. 

- Kinematics of the Gondola Fault Zone. Based on the analysis of the deformation pattern of the Gondola 

Fault Zone, we propose right-lateral slip resulting from NW-SE maximum horizontal stress as the dominant 

sense of motion along the entire fault system. This hypothesis is supported by a) the general geometry of the 

Gondola Fault Zone; b) the asymmetry of the associated anticlines, compatible with a compressional 

component roughly from the south; and c) the reversal of the vertical displacement along the structure from 

north to south side up (Fig. 5), that is an indication of strike-slip activity (e.g., Christie-Blick and Biddle, 

1985) as already pointed out by Colantoni et al. (1990) for older deposits. A further indication on the sense 

of shearing can be inferred from the geometry of the westernmost tip of the structure, where a N320° fault 

segment has a normal component of motion that downthrows the hanging-wall towards the NE, consistent 

with a right-lateral kinematics. Unfortunately, our data do not allow the amount of horizontal displacement to 

be directly assessed. We can only speculate that the strike-slip kinematics implies a ratio between horizontal 

and vertical displacement (much) larger than 1. 

 

- Activity along the entire E-W branch of the Gondola Fault Zone. The two main folds affecting Upper 
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Quaternary deposits show comparable shape, wavelength, amplitude and exhibit faulted northern limbs; this 

combined evidence leads us to ascribe both features to the same deformation system. The identified structure 

shows a pronounced E-W elongation and geographically coincides with the E-W branch of the Gondola 

Fault Zone as known from the literature. It is likely that the observed deformation pattern is due to the 

reactivation of this major inherited lineament. Unfortunately, the available data do not allow us to assess if 

the E-W branch of the Gondola Fault moves as a whole or if instead deformation is partitioned onto two or 

three active segments reflecting the branching we identified during this work (Fig. 5). 

 

- Structural relationships with the Mattinata Fault. The points discussed above reveal a similarity between 

the Gondola and the Mattinata Faults that goes far beyond the fact that they both trend E-W. They are both 

tens of kilometres-long, inherited, active fault systems, characterised at the surface by transcurrent 

kinematics with a present-day right-lateral component of motion. However, as shown in Subsection 2.3 and 

confirmed by our data, the Mattinata Fault and Gondola Fault Zone are neither directly connected nor 

perfectly aligned. The structural relationships between these fault systems hence remain an open question. 

Based on what we observed at the westernmost tip of the active Gondola Fault Zone, we can hypothesise the 

presence of a transfer zone between this one and the Mattinata Fault, characterised by second order, NW-SE 

striking, mainly normal faults (i.e. a strike-slip relay ramp). However, both fault systems are inherited 

structures; as such, their present-day relationships may be more complex, e.g. controlled by an inherited 

transfer zone developed under previous tectonic regimes. 

 

- Comparison of slip-rates along the Mattinata Fault and Gondola Fault Zone. A comparison of slip rates is 

possible only for the vertical component of fault dislocation. The ~0.01-0.16 mm/a values estimated in this 

paper for the main fault along the Gondola Fault Zone are quite smaller than those suggested by Piccardi 

(2005) for the Mattinata Fault (0.2-0.7 mm/a) based on geomorphic and palaeoseismological analyses, 

although Piccardi himself considers the upper bound as “surely overestimated”. The very nature of the 

available data, however, and the different methodologies used in the two areas imply differences in the 

density of data and in the accuracy of chronological constraints that make such comparison not 

straightforward. 
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- Seismotectonic implications. The Mattinata Fault has already been proposed as the source of severe 

historical earthquakes (493 A.D. and 1875), and frequent instrumental seismicity is recorded along and 

around it within the uppermost 25 km of the crust. Based on the similarities between the Gondola Fault Zone 

and the Mattinata Fault, one could expect that they also share a similar seismicity pattern. 

The empirical relationships by Wells and Coppersmith (1994) suggest that the entire E-W branch of 

the Gondola Fault Zone (~50 km) could generate earthquakes up to magnitude 6.9. Conversely, if we 

consider the Gondola Fault Zone as broken up into two or three segments, individual earthquake magnitudes 

could be in the order of 6.0-6.5. The latter scenario is compatible with the magnitude of the 1875 earthquake 

and with the 10-20 km length of the individual segments proposed for the Mattinata Fault (DISS Working 

Group, 2006, and references therein). However, neither have significant historical earthquakes been 

associated with the Gondola Fault Zone, nor has instrumental seismicity been recorded around it. Such 

difference with the Mattinata Fault could be only apparent, due to the difficulty of detecting and locating 

seismicity offshore. In the Gargano as much as in many other parts of the world, the location offshore of the 

historical earthquakes is particularly uncertain. For instance, in Venezuela, a region which has large 

seismically active areas offshore, Rodriguez and Audemard (2003) pointed out that when the available 

information is very limited, different interpretation models may lead to markedly contrasting locations for 

the same earthquake. Moreover, the short time span covered by instrumental records and the unfavourable 

architecture of seismological networks may conspire in making the seismotectonic characterisation of active 

areas offshore much more difficult. 

In summary, if we (i) consider significant the lack of historical seismicity in the offshore portion of 

the MGSZ, (ii) take into account that in a transcurrent regime the lack of constraints on the horizontal 

component of the slip-rates precludes any rigorous reasoning on the degree of activity of the fault systems, 

and (iii) admit for the sake of discussion that the vertical slip-rate values available for the Gondola Fault 

Zone and the Mattinata Fault are comparable, we can point at two opposite seismotectonic scenarios: 

1) the similarity between the Mattinata Fault and the Gondola Fault Zone is misleading and we are dealing 

with two truly independent and dissimilar tectonic structures, the first being more active and seismogenic, 

the second being characterised by moderate activity and by aseismic slip; 
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2) also the Gondola Fault Zone is a seismogenic fault, though with very low slip-rates, which would explain 

the lack of seismicity associated with it. Considering the total extent of the fault system, even though 

possibly fragmented in 10-15 km-long segments, the impact on the seismic hazard of the coastal region 

would be significant, and therefore this possibility deserves further investigation. 

In general, our results on the Gondola Fault Zone support the identification of the MGSZ as a major 

fault zone producing active shearing along its entire E-W extent, although with variable rates. Our study 

identifies novel targets for the exploitation of high-resolution stratigraphic reconstructions, which can now 

be used for (i) identifying active tectonic features and (ii) tackling open seismotectonic issues in marine 

settings. 
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Figure captions 
 

Fig. 1: a) Geological sketch map of Southern Italy (Calabrian arc excluded), showing the Mattinata-Gondola 

Shear Zone (MGSZ). b) Historical and instrumental earthquakes of the Central and Southern 

Apennines (M > 4.0; Gruppo di lavoro CPTI, 2004; Vannucci and Gasperini, 2004). The size of the 

square symbols is proportional to an equivalent magnitude derived from intensity data. 

Fig. 2: High-resolution (Chirp-Sonar and Sparker) seismic database used to define the stratigraphy of Late 

Quaternary deposits and the pattern of active deformation in the southern Adriatic Foreland. The box 

bounds the shelf area where deformation has been mapped in detail (Fig. 5). Note the complex 

morphology of the shelf margin (affected by large-scale erosion) and slope, where the relief along the 

NW-SE strike of the Gondola Fault Zone culminates in the Dauno Seamount (compare with Fig. 3). 

Fig. 3: Previous studies on the structural setting of the Gondola Fault Zone and nearby areas, based on high-

penetration/low-resolution seismic data, all simplified and redrawn from: a) De’ Dominicis and 

Mazzoldi (1987); b) Colantoni et al. (1990); c) de Alteriis (1995); d) Morelli (2002). Symbols for 

wells and locations are given in a). Notice the variable definitions of the Gondola Fault Zone. 

Fig. 4: Seismic profile SE06-62, summarising all key stratigraphic and structural features of the study area 

(notice the vertical exaggeration of Chirp-Sonar seismic profiles). Two gentle anticlines and an 

interposed syncline affect deposits overlying the inherited Gondola Fault Zone, located deep below the 

section. Both anticlines are slightly asymmetric, with a steeper northern limb. The northern anticline is 

affected by high-angle faults and secondary undulations. The southern one shows fluid-escape features 

and a minor undulation, likely indicating incipient fault propagation (dashed arrows). The folds are 

sealed by ES1 (~20 ka BP) and are characterised by syn-tectonic units within sequence 2 (dated 

between 230-250 and 130-150 ka BP) throughout the entire area. Faults in the section exhibit a 

vertical component of motion. Notice that both the main fault and its antithetic one displace the 5.5 ka 

maximum flooding surface (mfs) and the seafloor, where a small graben is detectable. 

Fig. 5: Structural map of the investigated area. 1) faults affecting the Holocene and Middle-Upper 

Pleistocene deposits; 2) faults affecting only the Middle-Upper Pleistocene deposits; 3) crest lines of 

the major anticlines; 4) crest lines of the minor anticlines and undulations; 5) flex lines of the fold 

limbs; 6) synclines; 7) fluid-escape features; 8) seafloor depth contours (interval 5 m). Thin straight 
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lines show the trace of seismic profiles in Figs. 4, 6, 7 and 8. Two major anticlines (northern and 

southern) and three main fault branches (western, central and eastern) can be identified. The fault 

branches show variable extent and may appear sealed by the ES1 surface or displace the Holocene 

deposits and the sea floor. They show a vertical component of motion, with the northern limb 

downthrown. In the easternmost part of the study area, close to the shelf-slope transition and in 

contrast with the pattern observed all along the rest of the Gondola Fault Zone, the southern limb is 

downthrown. 

Fig. 6: Examples of Chirp Sonar seismic profiles crossing the three fault branches. A) The northern fold is 

affected by a fault abruptly displacing Middle-Upper Pleistocene deposits and truncated by ES1. 

Notice the erosion and incision of deposits of sequence 1 on the limbs of the anticline, and the 

thickness reduction of sequence 2. A minor undulation is evident on the northern limb of the anticline. 

B) The fold along the central branch is markedly asymmetric, limited to the north by a fault affecting 

uppermost Pleistocene and Holocene deposits, up to the seafloor. C) In the eastern part of the study 

area, the southern fold appears more asymmetric than the northern one. Notice that the fault is located 

near the axis of the northern fold and offsets the reflectors up to the seafloor. See Figs. 2 and 5 for 

location. 

Fig. 7: Evidence of a secondary fold on the downthrown (northern) limb of the western branch fault, 

interpreted as the expression of an unresolved strike-slip component. Also notice the variable offset of 

reflectors along the fault plane. 

Fig. 8: Interpretation of Sparker profile SE-64. Deformation affects depositional units older than sequence 4, 

commonly not imaged on Chirp data, and is accompanied by growth strata at the base of sequence 4. 

Syn-tectonic deposits are also evident at the base of sequence 3, thus indicating fold growth at variable 

rates also before the time span commonly investigated using Chirp data. The section also shows syn-

tectonic features within sequence 2, that may be related to shelf margin incision and large scale 

erosion. Note the presence of a high-angle fault coinciding with the axis of the anticline, characterised 

by southern side downthrown and by the progressive decrease of the offset of reflectors from older to 

younger deposits. 



Tectonophysics, Special Issue: 
“Earthquake Geology: methods and applications” 

Ridente et al. 
Accepted, 20.11.2007 

 

24 

 
Fig. 1 



Tectonophysics, Special Issue: 
“Earthquake Geology: methods and applications” 

Ridente et al. 
Accepted, 20.11.2007 

 

25 

 

Fig. 2 



Tectonophysics, Special Issue: 
“Earthquake Geology: methods and applications” 

Ridente et al. 
Accepted, 20.11.2007 

 

26 

 

Fig. 3 

 

 

Fig. 4 



Tectonophysics, Special Issue: 
“Earthquake Geology: methods and applications” 

Ridente et al. 
Accepted, 20.11.2007 

 

27 

 

Fig. 5 



Tectonophysics, Special Issue: 
“Earthquake Geology: methods and applications” 

Ridente et al. 
Accepted, 20.11.2007 

 

28 

 

Fig. 6 



Tectonophysics, Special Issue: 
“Earthquake Geology: methods and applications” 

Ridente et al. 
Accepted, 20.11.2007 

 

29 

 

Fig. 7 

 

Fig. 8 


