242 research outputs found

    Thou Wilt Keep Him in Perfect Peace. Full Anthem for Four Voices

    Get PDF
    n/

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Global Health: A Successful Context for Precollege Training and Advocacy

    Get PDF
    Despite a flourishing biomedical and global health industry [1] too few of Washington state's precollege students are aware of this growing sector and emerging ideas on bacteria, fungi, parasites and viruses. Against the backdrop of numerous reports regarding declining precollege student interest in science [2], a precollege program was envisioned at Seattle Biomedical Research Institute (as of 2010, Seattle BioMed) to increase youth engagement in biomedical research and global health, increase community interest in infectious diseases and mobilize a future biomedical workforce. Since 2005, 169 rising high school juniors have participated in the BioQuest Academy precollege immersion program at Seattle BioMed. Assembling in groups of 12, students conduct laboratory experiments (e.g., anopheline mosquito dissection, gene expression informed tuberculosis drug design and optimizing HIV immunization strategies) related to global health alongside practicing scientific mentors, all within the footprint the institute. Laudable short-term impacts of the program include positive influences on student interest in global health (as seen in the students' subsequent school projects and their participation in Seattle BioMed community events), biomedical careers and graduate school (e.g., 16.9% of teens departing 2008–2009 Academy report revised goals of attaining a doctorate rather than a baccalaureate diploma). Long-term, 97% of alumni (2005–2008) are attending postsecondary schools throughout North America; eight graduates have already published scientific articles in peer-reviewed journals and/or presented their scientific data at national and international meetings, and 26 have been retained by Seattle BioMed researchers as compensated technicians and interns. Providing precollege students with structured access to practicing scientists and authentic research environments within the context of advancing global health has been a robust means of both building a future pool of talented leaders and engaged citizenry and increasing the visibility of health disparities within the community

    Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA

    Get PDF
    Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes (IEs) that bind to chondroitin sulphate A (CSA) in the placenta by PAM-associated clonally variant surface antigens (VSA). Pregnancy-specific VSA (VSAPAM), which include the PfEMP1 variant VAR2CSA, are targets of IgG-mediated protective immunity to PAM. Here, we report an investigation of the specificity of naturally acquired immunity to PAM, using eight human monoclonal IgG1 antibodies that react exclusively with intact CSA-adhering IEs expressing VSAPAM. Four reacted in Western blotting with high-molecular-weight (> 200 kDa) proteins, while seven reacted with either the DBL3-X or the DBL5-Δ domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3-X domains from P. falciparum field isolates to evaluate B-cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3-X construct. Our findings show that there is a high-frequency memory response to VSAPAM, indicating that VAR2CSA is a primary target of naturally acquired PAM-specific protective immunity, and demonstrate the value of human monoclonal antibodies and conformationally intact recombinant antigens in VSA characterization

    Non-Glycosidically Linked Pseudodisaccharides: Thioethers, Sulfoxides, Sulfones, Ethers, Selenoethers, and Their Binding to Lectins

    Full text link
    Hydrolytically stable non-glycosidically linked tail-to-tail pseudodisaccharides are linked by a single bridging atom remote from the anomeric centre of the constituent monosaccharides. Some such pseudodisaccharides with sulfur or oxygen bridges were found to act as disaccharide mimetics in their binding to the Banana Lectin and to Concanavalin A. A versatile synthetic route to a small library of such compounds is described.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69166/1/1951_ftp.pd

    Plasmodium falciparum antigenic variation. Mapping mosaic var gene sequences onto a network of shared, highly polymorphic sequence blocks

    Get PDF
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, encoded by an extremely diverse gene family called var. Understanding of the genetic organization of var genes is hampered by sequence mosaicism that results from a long history of non-homologous recombination. Here we have used software designed to analyse social networks to visualize the relationships between large collections of short var sequences tags sampled from clinical parasite isolates. In this approach, two sequences are connected if they share one or more highly polymorphic sequence blocks. The results show that the majority of analysed sequences including several var-like sequences from the chimpanzee parasite Plasmodium reichenowi can be either directly or indirectly linked together in a single unbroken network. However, the network is highly structured and contains putative subgroups of recombining sequences. The major subgroup contains the previously described group A var genes, previously proposed to be genetically distinct. Another subgroup contains sequences found to be associated with rosetting, a parasite virulence phenotype. The mosaic structure of the sequences and their division into subgroups may reflect the conflicting problems of maximizing antigenic diversity and minimizing epitope sharing between variants while maintaining their host cell binding functions

    Several domains from VAR2CSA can induce Plasmodium falciparum adhesion-blocking antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria caused by <it>Plasmodium falciparum </it>can result in several different syndromes with severe clinical consequences for the about 200 million individuals infected each year. During pregnancy, women living in endemic areas become susceptible to malaria due to lack of antibodies against a unique <it>P. falciparum </it>membrane protein, named VAR2CSA. This antigen is not expressed in childhood infections, since it binds chondroitin sulphate A (CSA) expressed on the intervillous space in the placenta. A vaccine appears possible because women acquire protective antibodies hindering sequestration in the placenta as a function of parity. A challenge for vaccine development is to design small constructs of this large antigen, which can induce broadly protective antibodies. It has previously been shown that one domain of VAR2CSA, DBL4-FCR3, induces parasite adhesion-blocking antibodies. In this study, it is demonstrated that other domains of VAR2CSA also can induce antibodies with inhibitory activity.</p> <p>Methods</p> <p>All VAR2CSA domains from the 3D7 and HB3 parasites were produced in <it>Baculovirus</it>-transfected insect cells. Groups of three rats per protein were immunized and anti-sera were tested for surface reactivity against infected erythrocytes expressing FCR3 VAR2CSA and for the ability to inhibit FCR3CSA parasite adhesion to CSA. The fine specificity of the immune sera was analysed by VAR2CSA peptide arrays.</p> <p>Results</p> <p>Inhibitory antibodies were induced by immunization with DBL3-HB3 T1 and DBL1-3D7. However, unlike the previously characterised DBL4-FCR3 response the inhibitory response against DBL1-3D7 and DBL3-HB3 T1 was poorly reproduced in the second rounds of immunizations.</p> <p>Conclusion</p> <p>It is possible to induce parasite adhesion-blocking antibodies when immunizing with a number of different VAR2CSA domains. This indicates that the CSA binding site in VAR2CSA is comprised of epitopes from different domains.</p

    Protective immunity to pre-erythrocytic stage malaria

    Get PDF
    The development of a vaccine against malaria is a major research priority given the burden of disease, death and economic loss inflicted upon the tropical world by this parasite. Despite decades of effort, however, a vaccine remains elusive. The best candidate is a subunit vaccine termed RTS,S but this provides only partial protection against clinical disease. This review examines what is known about protective immunity against pre-erythrocytic stage malaria by considering the humoral and T cell-mediated immune responses that are induced by attenuated sporozoites and by the RTS,S vaccine. On the basis of these observations a set of research priorities are defined that are crucial for the development of a vaccine capable of inducing long-lasting and high-grade protection against malaria

    Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration

    Get PDF
    Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an α-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria
    • 

    corecore