15 research outputs found

    Limaria hians beds in tide-swept sublittoral muddy mixed sediment

    Get PDF

    Focusing and Calibration of Large Scale Network Sensors using GraphBLAS Anonymized Hypersparse Matrices

    Full text link
    Defending community-owned cyber space requires community-based efforts. Large-scale network observations that uphold the highest regard for privacy are key to protecting our shared cyberspace. Deployment of the necessary network sensors requires careful sensor placement, focusing, and calibration with significant volumes of network observations. This paper demonstrates novel focusing and calibration procedures on a multi-billion packet dataset using high-performance GraphBLAS anonymized hypersparse matrices. The run-time performance on a real-world data set confirms previously observed real-time processing rates for high-bandwidth links while achieving significant data compression. The output of the analysis demonstrates the effectiveness of these procedures at focusing the traffic matrix and revealing the underlying stable heavy-tail statistical distributions that are necessary for anomaly detection. A simple model of the corresponding probability of detection (pdp_{\rm d}) and probability of false alarm (pfap_{\rm fa}) for these distributions highlights the criticality of network sensor focusing and calibration. Once a sensor is properly focused and calibrated it is then in a position to carry out two of the central tenets of good cybersecurity: (1) continuous observation of the network and (2) minimizing unbrokered network connections.Comment: Accepted to IEEE HPEC, 9 pages, 12 figures, 1 table, 63 references, 2 appendice

    The Compton Spectrometer and Imager

    Full text link
    The Compton Spectrometer and Imager (COSI) is a NASA Small Explorer (SMEX) satellite mission in development with a planned launch in 2027. COSI is a wide-field gamma-ray telescope designed to survey the entire sky at 0.2-5 MeV. It provides imaging, spectroscopy, and polarimetry of astrophysical sources, and its germanium detectors provide excellent energy resolution for emission line measurements. Science goals for COSI include studies of 0.511 MeV emission from antimatter annihilation in the Galaxy, mapping radioactive elements from nucleosynthesis, determining emission mechanisms and source geometries with polarization measurements, and detecting and localizing multimessenger sources. The instantaneous field of view for the germanium detectors is >25% of the sky, and they are surrounded on the sides and bottom by active shields, providing background rejection as well as allowing for detection of gamma-ray bursts and other gamma-ray flares over most of the sky. In the following, we provide an overview of the COSI mission, including the science, the technical design, and the project status.Comment: 8 page

    The cosipy library: COSI's high-level analysis software

    Full text link
    The Compton Spectrometer and Imager (COSI) is a selected Small Explorer (SMEX) mission launching in 2027. It consists of a large field-of-view Compton telescope that will probe with increased sensitivity the under-explored MeV gamma-ray sky (0.2-5 MeV). We will present the current status of cosipy, a Python library that will perform spectral and polarization fits, image deconvolution, and all high-level analysis tasks required by COSI's broad science goals: uncovering the origin of the Galactic positrons, mapping the sites of Galactic nucleosynthesis, improving our models of the jet and emission mechanism of gamma-ray bursts (GRBs) and active galactic nuclei (AGNs), and detecting and localizing gravitational wave and neutrino sources. The cosipy library builds on the experience gained during the COSI balloon campaigns and will bring the analysis of data in the Compton regime to a modern open-source likelihood-based code, capable of performing coherent joint fits with other instruments using the Multi-Mission Maximum Likelihood framework (3ML). In this contribution, we will also discuss our plans to receive feedback from the community by having yearly software releases accompanied by publicly-available data challenges

    European Red List of Habitats Part 1. Marine habitats

    Get PDF
    The European Red List of Habitats provides an overview of the risk of collapse (degree of endangerment) of marine, terrestrial and freshwater habitats in the European Union (EU28) and adjacent regions (EU28+), based on a consistent set of categories and criteria, and detailed data and expert knowledge from involved countries1. A total of 257 benthic marine habitat types were assessed. In total, 19% (EU28) and 18% (EU28+) of the evaluated habitats were assessed as threatened in categories Critically Endangered, Endangered and Vulnerable. An additional 12% were Near Threatened in the EU28 and 11% in the EU28+. These figures are approximately doubled if Data Deficient habitats are excluded. The percentage of threatened habitat types differs across the regional seas. The highest proportion of threatened habitats in the EU28 was found in the Mediterranean Sea (32%), followed by the North-East Atlantic (23%), the Black Sea (13%) and then the Baltic Sea (8%). There was a similar pattern in the EU28+. The most frequently cited pressures and threats were similar across the four regional seas: pollution (eutrophication), biological resource use other than agriculture or forestry (mainly fishing but also aquaculture), natural system modifications (e.g. dredging and sea defence works), urbanisation and climate change. Even for habitats where the assessment outcome was Data Deficient, the Red List assessment process has resulted in the compilation of a substantial body of useful information to support the conservation of marine habitats

    Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: A qualitative investigation

    No full text
    INTRODUCTION : Hormonal fluctuations may influence fibrin structure. During the menstrual cycle, plasma fibrinogen levels change, mainly due to the variations of estrogen. Throughout the menstrual cycle estrogen levels peak twice, first during the mid-follicular phase and then a lower second peak during the luteal phase. MATERIALS AND METHODS : In order to investigate the possible changes in the fibrin network throughout the menstrual cycle, the fibrin network ultrastructure of six healthy female participants were studied at different intervals in the menstrual cycle where differences in estrogen levels are prevalent. Blood plasma smears were prepared for scanning and transmission electron microscopy analysis. RESULTS : The external and internal structure of the fibrin fibers showed different morphologies throughout the menstrual cycle. The fibrin fibers were smooth during days 1–5. However, during days 12–14 of the menstrual cycle the fibrin fiber morphology started to change, becoming less smooth. During the luteal phase of the cycle (days 20–25), the network appears sticky, where the minor, thin fibers are more prominent between the thick fibers when compared to the menstrual phase. CONCLUSION : The two estrogen peaks of the menstrual cycle coincide with the changes seen in the current qualitative research, where the fibrin morphology changes during the same time as the estrogen peaks occur. Purified fibrinogen confirmed that it is indeed estrogen that causes the altered fibrin network morphology. This research is the first to show ultrastructural changes in fibrin fiber morphology resulting from estrogen changes during the menstrual cycle.http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-00292015-08-31hb201
    corecore