135 research outputs found

    Metabolomics approaches for the diagnosis and understanding of kidney diseases

    Get PDF
    Diseases of the kidney are difficult to diagnose and treat. This review summarises the definition, cause, epidemiology and treatment of some of these diseases including chronic kidney disease, diabetic nephropathy, acute kidney injury, kidney cancer, kidney transplantation and polycystic kidney diseases. Numerous studies have adopted a metabolomics approach to uncover new small molecule biomarkers of kidney diseases to improve specificity and sensitivity of diagnosis and to uncover biochemical mechanisms that may elucidate the cause and progression of these diseases. This work includes a description of mass spectrometry-based metabolomics approaches, including some of the currently available tools, and emphasises findings from metabolomics studies of kidney diseases. We have included a varied selection of studies (disease, model, sample number, analytical platform) and focused on metabolites which were commonly reported as discriminating features between kidney disease and a control. These metabolites are likely to be robust indicators of kidney disease processes, and therefore potential biomarkers, warranting further investigation

    There is detectable variation in the lipidomic profile between stable and progressive patients with idiopathic pulmonary fibrosis (IPF)

    Get PDF
    Background Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear. Methods In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and progressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the specificity of lipid identification. Results Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue. Conclusion This is the first study to characterise lipid metabolism between stable and progressive IPF, with results suggesting disparities in the circulating lipidome with disease progression

    Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health

    Get PDF
    Use of herbal medicines and supplements by consumers to prevent or treat disease, particularly chronic conditions continues to grow, leading to increased awareness of the minimal regulation standards in many countries. Fraudulent, adulterated and contaminated herbal and traditional medicines and dietary supplements are a risk to consumer health, with adverse effects and events including overdose, drug-herb interactions and hospitalisation. The scope of the risk has been difficult to determine, prompting calls for new approaches, such as the combination of DNA metabarcoding and mass spectrometry used in this study. Here we show that nearly 50% of products tested had contamination issues, in terms of DNA, chemical composition or both. Two samples were clear cases of pharmaceutical adulteration, including a combination of paracetamol and chlorpheniramine in one product and trace amounts of buclizine, a drug no longer in use in Australia, in another. Other issues include the undeclared presence of stimulants such as caffeine, synephrine or ephedrine. DNA data highlighted potential allergy concerns (nuts, wheat), presence of potential toxins (Neem oil) and animal ingredients (reindeer, frog, shrew), and possible substitution of bird cartilage in place of shark. Only 21% of the tested products were able to have at least one ingredient corroborated by DNA sequencing. This study demonstrates that, despite current monitoring approaches, contaminated and adulterated products are still reaching the consumer. We suggest that a better solution is stronger pre-market evaluation, using techniques such as that outlined in this study

    Abortion and lamb mortality between pregnancy scanning and lamb marking for maiden ewes in southern Australia

    Get PDF
    The contribution of abortions to the overall mortality of lambs born to maiden (primiparous) ewes in Australia remains unclear. This cohort study aimed to quantify abortion and lamb mortality for ewe lambs and maiden Merino two-tooth ewes. Lamb mortality from pregnancy scanning to marking were determined for 19 ewe lamb and 11 Merino two-tooth ewe flocks across southern Australia. Average lamb mortality from scanning to marking was 35.8% (range 14.3–71.1%) for the ewe lambs and 29.4% (range 19.7–52.7%) for the two-tooth ewes. Mid-pregnancy abortion was detected in 5.7% of ewes (range 0–50%) in the ewe lamb flocks and 0.9% of ewes (range 0–4.4%) in the two-tooth ewe flocks. Mid-pregnancy abortion affecting ≥2% of ewes was observed in 6/19 ewe lamb flocks and 2/11 two-tooth ewe flocks. Lamb mortality from birth to marking represented the greatest contributor to foetal and lamb mortality after scanning, but mid-pregnancy abortion was an important contributor to lamb mortality in some ewe lamb flocks. Variability between the flocks indicates scope to improve the overall reproductive performance for maiden ewes by reducing foetal and lamb losses. Addressing mid-pregnancy abortion may improve the reproductive performance in some flocks

    Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health

    Get PDF
    Use of herbal medicines and supplements by consumers to prevent or treat disease, particularly chronic conditions continues to grow, leading to increased awareness of the minimal regulation standards in many countries. Fraudulent, adulterated and contaminated herbal and traditional medicines and dietary supplements are a risk to consumer health, with adverse effects and events including overdose, drug-herb interactions and hospitalisation. The scope of the risk has been difficult to determine, prompting calls for new approaches, such as the combination of DNA metabarcoding and mass spectrometry used in this study. Here we show that nearly 50% of products tested had contamination issues, in terms of DNA, chemical composition or both. Two samples were clear cases of pharmaceutical adulteration, including a combination of paracetamol and chlorpheniramine in one product and trace amounts of buclizine, a drug no longer in use in Australia, in another. Other issues include the undeclared presence of stimulants such as caffeine, synephrine or ephedrine. DNA data highlighted potential allergy concerns (nuts, wheat), presence of potential toxins (Neem oil) and animal ingredients (reindeer, frog, shrew), and possible substitution of bird cartilage in place of shark. Only 21% of the tested products were able to have at least one ingredient corroborated by DNA sequencing. This study demonstrates that, despite current monitoring approaches, contaminated and adulterated products are still reaching the consumer. We suggest that a better solution is stronger pre-market evaluation, using techniques such as that outlined in this study

    Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP

    Get PDF
    AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells. METHODS: Freshly isolated monocytes were incubated with a range of secretions for 1 h and then stimulated with lipopolysaccharides (range 0-100 ng/ml) or lipoteichoic acid (range 0-5 microg/ml) for 18 h. The expression of cell surface molecules, cytokine and chemokine levels in culture supernatants, cell viability, chemotaxis, and phagocytosis and killing of Staphylococcus aureus were measured. RESULTS: Maggot secretions dose-dependently inhibited production of the pro-inflammatory cytokines TNF-alpha, IL-12p40 and macrophage migration inhibitory factor by lipopolysaccharides- and lipoteichoic acid-stimulated monocytes, while enhancing production of the anti-inflammatory cytokine IL-10. Expression of cell surface receptors involved in pathogen recognition remained unaffected by secretions. In addition, maggot secretions altered the chemokine profile of monocytes by downregulating macrophage inflammatory protein-1beta and upregulating monocyte chemoattractant protein-1 and IL-8. Nevertheless, chemotactic responses of monocytes were inhibited by secretions. Furthermore, maggot secretions did not affect phagocytosis and intracellular killing of S. aureus by human monocytes. Finally, secretions induced a transient rise in the intracellular cyclic AMP concentration in monocytes and Rp-cyclic AMPS inhibited the effects of secretions. CONCLUSIONS/INTERPRETATION: Maggot secretions inhibit the pro-inflammatory responses of human monocytes through a cyclic AMP-dependent mechanism. Regulation of the inflammatory processes by maggots contributes to their beneficial effects on chronic wound

    Concordance in diabetic foot ulceration : a cross-sectional study of agreement between wound swabbing and tissue sampling in infected ulcers

    Get PDF
    BACKGROUND: There is inadequate evidence to advise clinicians on the relative merits of swabbing versus tissue sampling of infected diabetic foot ulcers (DFUs). OBJECTIVES: To determine (1) concordance between culture results from wound swabs and tissue samples from the same ulcer; (2) whether or not differences in bacterial profiles from swabs and tissue samples are clinically relevant; (3) concordance between results from conventional culture versus polymerase chain reaction (PCR); and (4) prognosis for patients with an infected DFU at 12 months' follow-up. METHODS: This was a cross-sectional, multicentre study involving patients with diabetes and a foot ulcer that was deemed to be infected by their clinician. Microbiology specimens for culture were taken contemporaneously by swab and by tissue sampling from the same wound. In a substudy, specimens were also processed by PCR. A virtual 'blinded' clinical review compared the appropriateness of patients' initial antibiotic regimens based on the results of swab and tissue specimens. Patients' case notes were reviewed at 12 months to assess prognosis. RESULTS: The main study recruited 400 patients, with 247 patients in the clinical review. There were 12 patients in the PCR study and 299 patients in the prognosis study. Patients' median age was 63 years (range 26-99 years), their diabetes duration was 15 years (range 2 weeks-57 years), and their index ulcer duration was 1.8 months (range 3 days-12 years). Half of the ulcers were neuropathic and the remainder were ischaemic/neuroischaemic. Tissue results reported more than one pathogen in significantly more specimens than swabs {86.1% vs. 70.1% of patients, 15.9% difference [95% confidence interval (CI) 11.8% to 20.1%], McNemar's p-value < 0.0001}. The two sampling techniques reported a difference in the identity of pathogens for 58% of patients. The number of pathogens differed in 50.4% of patients. In the clinical review study, clinicians agreed on the need for a change in therapy for 73.3% of patients (considering swab and tissue results separately), but significantly more tissue than swab samples required a change in therapy. Compared with traditional culture, the PCR technique reported additional pathogens for both swab and tissue samples in six (50%) patients and reported the same pathogens in four (33.3%) patients and different pathogens in two (16.7%) patients. The estimated healing rate was 44.5% (95% CI 38.9% to 50.1%). At 12 months post sampling, 45 (15.1%) patients had died, 52 (17.4%) patients had a lower-extremity ipsilateral amputation and 18 (6.0%) patients had revascularisation surgery. LIMITATIONS: We did not investigate the potential impact of microbiological information on care. We cannot determine if the improved information yield from tissue sampling is attributable to sample collection, sample handling, processing or reporting. CONCLUSIONS: Tissue sampling reported both more pathogens and more organisms overall than swabbing. Both techniques missed some organisms, with tissue sampling missing fewer than swabbing. Results from tissue sampling more frequently led to a (virtual) recommended change in therapy. Long-term prognosis for patients with an infected foot ulcer was poor. FUTURE WORK: Research is needed to determine the effect of sampling/processing techniques on clinical outcomes and antibiotic stewardship. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    Get PDF
    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes
    corecore