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There is detectable variation in the lipidomic 
profile between stable and progressive patients 
with idiopathic pulmonary fibrosis (IPF)
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Abstract 

Background:  Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and 
progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal 
lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive 
pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear.

Methods:  In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spec-
trometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and pro-
gressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the 
specificity of lipid identification.

Results:  Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing 
differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF 
groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue.

Conclusion:  This is the first study to characterise lipid metabolism between stable and progressive IPF, with results 
suggesting disparities in the circulating lipidome with disease progression.
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Background
Idiopathic pulmonary fibrosis (IPF) is a chronic, pro-
gressive lung disease characterized by alveolar epithelial 
cell activation and damage, resulting in proliferation of 
activated fibroblasts and extracellular matrix deposition 
leading to irreversible destruction of gas exchange units 
and lung remodelling [1]. Previous studies suggested 
that IPF is related to abnormalities in a number of bio-
logical processes including glycolysis, fatty acid oxida-
tion and vascular remodelling [1–3]. Lipidomics and 

metabolomics are a developing field of systems biology 
research that studies lipids as key intermediates of cel-
lular mechanisms and their roles have been explored in 
other respiratory diseases [4, 5].

Ultra-performance liquid chromatography-quadrupole 
time-of-flight mass spectrometry (UPLC-QTOF-MS) is a 
powerful tool for qualitative characterization of chemical 
components, providing acquisition of MS spectra with 
relatively high resolution, sensitivity and mass accuracy, 
which has become an advanced tool for the qualitative 
and quantitative analysis of multiple components. Lipid-
omic studies of complex biological matrices (plasma and 
tissue extracts) are routinely performed using UPLC-
QTOF-MS, resulting in excellent metabolite detection 

Open Access

*Correspondence:  britt.clynick@uwa.edu.au
3 Institute for Respiratory Health, Nedlands, WA, Australia
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8777-6877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-021-01682-3&domain=pdf


Page 2 of 8Nambiar et al. Respir Res          (2021) 22:105 

performance at high speeds and sensitivities [6]. A key 
challenge in the analysis of complex lipid extracts from 
crude plasma samples is the co-elution of isomeric lipid 
species as a result of small variations in their fatty acid 
arrangements and hydrocarbon backbones [7]. To help 
overcome this, we have applied SONAR, a rapidly scan-
ning method in tandem with UPLC-QTOF-MS acquisi-
tion to provide additional information and quantification 
of metabolites in complex samples [8, 9].

There have been several studies examining circula-
tory molecules that characterise progressive IPF, focus-
ing mostly on proteomics and genomics [10–12]. Two 
studies have characterised lipidome differences between 
IPF and healthy controls, reporting several lipids that 
have the ability to differentiate IPF from controls [13, 
14]. We therefore hypothesize that there are differences 
in circulating lipids between stable and progressive IPF. 
To address this, we carried out UPLC-QTOF-MS imple-
menting SONAR, to assess plasma samples from stable 
and progressive IPF patients.

Methods
Biological samples
The study cohort consisted of a total of 58 plasma sam-
ples (30 stable and 28 progressors) from the Australian 
IPF Registry with a clinical diagnosis of IPF (Table  1). 
Baseline forced vital capacity (FVC) and diffusing 
capacity for carbon monoxide (DLco) were assessed 
± 6  months from the time of blood collection, and the 
longitudinal FVC and DLco trajectories were determined 
± 6–12 months from the baseline lung function using a 

linear regression model. A decline in FVC ≥ 10% and/or 
DLco ≥ 15% within 6–12  months of baseline was used 
to define progressive IPF. All work was approved by the 
Sydney Local Health District Human Research Ethics 
Committee (Reference number: HREC 11/RPAH 439), 
Royal Perth Hospital Human Research Ethics Commit-
tee (Reference number: REG 15-204) and the Murdoch 
University Human Research Ethics Committee (Approval 
number: 2017/254).

Sample preparation
Plasma lipid extraction was carried out as previously 
described [15], and each sample was transferred into two 
different plates corresponding to positive and negative 
modes of acquisition. This allows ions to be differentiated 
by its charge (protinate for positively charged and depro-
tinated for negatively charged molecules). This is useful 
where the stability of the molecule being characterised is 
affected by its charge and which mode it runs through, 
which may also provide complementary structural infor-
mation through different fragmentation processes [16]. 
Pooled samples were generated and used as the study ref-
erence or for quality control (QC) checks.

UPLC configuration
Ultra-performance liquid chromatography (UPLC) is an 
analytical technique used for the separation, identifica-
tion and further quantitation of compounds in a mixture 
using pressurized organic and/or polar solvent systems. 
This was used for the separation, identification and fur-
ther quantitation of compounds using an ACQUITY 
I-class system (Waters Corporation, USA) equipped 
with a Waters CSH C18 column (2.1 × 100 mm, 1.8 µm). 
Chromatographic separation was achieved with a gradi-
ent of 40 to 99% mobile phase over 18 min. Solvent flow 
rate and column temperature was maintained at 0.4 mL/
min and 55  °C, respectively. The lock-mass compound, 
leucine enkaphlin (200  pg/μL) was prepared in acetoni-
trile/H2O (50:50, v/v), and was delivered at 10 µL/min to 
the reference sprayer source of the mass spectrometer.

Mass spectrometry acquisition
MS-based lipid analysis was performed using a Xevo 
G2-XS QTOF mass spectrometer (Waters Corporation, 
UK) in positive electrospray ionisation (ESI) mode. Note, 
positive ionization investigates positive ions in low pH, 
and negative ionization investigates negative ions at high 
pH. The source temperature and capillary voltage was 
set to 120 °C and 2.0 kV, respectively. The time-of-flight 
(TOF) mass analyser of the mass spectrometer was cali-
brated using a mass to size ratio (m/z) 50 to 1200.

Table 1  Summary of the clinical characteristics of stable versus 
progressive IPF patients

Age, FVC and DLCO displayed as mean values (± SD)

SD standard deviation, FVC forced vital capacity, DLCO diffusing capacity for 
carbon monoxide

Characteristic Number of cases

Stable Progressive

All cases 30 28

Age (years)

 Mean 68 ± 8 70 ± 9

Sex

 Male 19 17

 Female 11 11

Smoking history

 Never 13 8

 Ex-smoker 16 20

Current 1 –

FVC (% predicted) 82 ± 20 73 ± 15

DLCO (% predicted) 53 ± 18 37 ± 14
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Data processing
Peak picked features were statistically analysed using 
EZinfo (MKS Data Analytics Solutions, Sweden) and 
the significant features of interest were imported back 
into Progenesis QI. Lipid identification was achieved 
by matching experimental fragments against the theo-
retical fragmentation product ion spectra from LIPID 
MAPS structure database (Lipidomics Gateway, UK). 
Additional manual annotation was also conducted 
using the Lipid Reporter toolkit and reported accord-
ing to the shorthand nomenclature defined by Liebisch 
et al. [17].

Statistical analysis
The coefficient of variation (CV) was calculated across 
quality control (QC) samples for each feature and those 
with a CV > 30% were removed. The high CVs at these 
levels demonstrate the expected loss of precision when 
quantifying samples at the extreme ends of the assay’s 
range. Two statistical modelling tools were used to dis-
criminate diseased experimental groups, including the 
principal component analysis (PCA) and orthogonal 
projection to latent structures-discriminant analysis 
(OPLS-DA), based on their contribution to the variation 
and correlation between the two groups (stable versus 
progressors). These modeling tools provide insights into 
separations between experimental groups based on the 
collected high-dimensional spectral measurements. PCA 
was initially performed to deconstruct the stable and 
progressive patient dataset; however, the unsupervised 
multivariate approach did not reveal significant differ-
ences between both groups (Fig.  2a). The heterogeneity 
between these two diseased groups with similar underly-
ing mechanisms were more likely to cluster together in a 
principal component space. Supervised multivariate data 
analysis OPLS-DA was then used to generate a regres-
sion model to disentangle group-predictive and group-
unrelated variation in the measured data. The OPLS-DA 
model clearly distinguished the stable and progressor 
groups from which an S-plot was then generated (Fig. 2b, 
c). The S-Plot is a statistical tool for visualizing both the 
covariance and correlation between the endogenous fea-
tures and the modelled group designation (stable ver-
sus progressor). Consolidation of the S-Plots from the 
OPLS-DA models were useful for the identification of 
biochemically atypical features with statistical signifi-
cance between the groups, based on their contributions 
to the model and their reliabilities. Furthermore, variable 
importance in projection (VIP) scores of each feature 
were calculated from the OPLS-DA model, summarising 
the contributions each lipid makes to the model. Features 
with VIP scores ≥ 1 were considered as significant [18].

MALDI‑MSI acquisition
In order to validate whether changes in the circula-
tion is present in the lung, mass spectrometry imaging 
(MSI) was carried out to spatially resolve the distribu-
tion of the biomolecules resolved by SONAR. The lipids 
were resolved in a total of 20 fresh frozen tissue sec-
tions (20  µm; 10 from IPF patients and 10 healthy con-
trols) using matrix-assisted laser desorption ionisation 
(MALDI)-QTOF MSI and data was interrogated by High 
Definition Imaging (HDI) software (Waters Corpora-
tion, U.K.) to generate ion intensity maps. The heat maps 
of a specific ion generated corresponded to the relative 
abundance of ions present over the entire imaged surface. 
All data were acquired in positive mode operating over a 
mass range of m/z 50 to 1200 and were performed using 
the Water Synapt G2S mass spectrometer equipped with 
an orthogonal MALDI ion source and an Nd:YAG laser 
(Waters Corporation, Manchester, U.K.). Putative iden-
tification of lipids was achieved by accurate mass meas-
urement and matched against lipid databases including 
LIPID MAPS and LipidBlast.

Results
Demographic characteristics of this Australian cohort 
(Table  1) demonstrated for the stable cohort predomi-
nantly males (n = 19, 63%), mean age (68 ± 8 year), FVC 
82 ± 20% predicted and DLco 53 ± 18% predicted; and 
for the progressive cohort predominantly males (n = 17, 
61%), mean age (70 ± 9  year), FVC 73 ± 15% predicted 
and DLco 37 ± 14% predicted.

With SONAR, approximately 5000 features were 
resolved in each analytical run. The total ion chromato-
grams (TIC) also displayed a typical lipid spectral pattern 
consistent with previous studies [19]. All lipid classes 
were resolved by SONAR (Fig. 1).

For statistical analysis, PCA was initially performed 
to decompress the stable and progressive patient data-
set; however, unsupervised multivariate analysis did 
not reveal significant differences between the groups 
(Fig. 2a). Supervised multivariate data analysis OPLS-DA 
was then used to generate a regression model to disen-
tangle group-predictive and group-unrelated variation in 
the measured data [20]. The OPLS-DA model clearly dis-
tinguished the stable and progressor groups from which 
an S-plot was then generated (Fig. 2b, c) [21].

From the features exported using EZinfo, eight lipids 
from positive SONAR mode were putatively identified. 
The identified lipids included six glycerolipids (triglycer-
ides (TG)) and two glycerophoslipids (phosphatidylcho-
line (PC)) (Table 2). Using SONAR, three TGs (54:5, 54:6, 
53:7) and two PCs (40:6, 36:3) were resolved higher in the 
progressor subgroup (between 1.9–3.3-fold change). All 
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other lipids observed relatively unchanged levels between 
the two subgroups (between 0.9–1.11-fold differences).

Exploration of these lipids in IPF tissue revealed an 
abundance of PC and TG, corresponding to circula-
tory findings. More specifically, the adduct species 
[M+K]+ showed improved abundance, while [M+H]+ 
and [M+NH4]+ showed poor ion spectra (Fig. 3). In this 
study, these enhanced signal intensities was advanta-
geous as it allowed for the improved discrimination of 
lipid analytes from the background ions. This is backed 
up by previous research indicating that [M+K]+ ions 
were the only adduct type that were well-resolved for the 
two lipids [22, 23].

Discussion
Lipids play an important role in lung pathology and phys-
iology. Although the composition and involvement of the 
lipidome in various diseases is still poorly understood, 
abnormal lipid metabolism has been reported in few 
lung diseases including asthma and COPD [4, 5]. Lipids 
comprise diverse classes of molecules which are critically 
involved in cellular structure, signalling and energy stor-
age [24]. However, their potential role in IPF pathogen-
esis remains unclear. This is the first study to evaluate the 
differences in the lipidome of stable versus progressive 
IPF patients.

Another novel aspect of this study was the tandem use 
of SONAR in assessing differences in plasma samples 
between stable and progressive IPF. It is well documented 
that conventional quadrupole time-of-flight (QTOF)-
MS methods are successful at resolving the lipid classes 
chromatographically, however, compound identifica-
tion is still challenging due to the inaccurate assignment 
of lipid precursors to their corresponding product ions. 
In contrast, the precursor and product ions generated 
by SONAR contributed to the specificity of the method, 
increasing the probability of successful lipid library 
matching [8, 25]. Furthermore, the MALDI-MSI method 
allowed for the visualisation of these lipids within IPF 
tissue.

With SONAR, a number of TG and PC were identi-
fied and found to be expressed at higher levels in the IPF 
progressor group. Specifically, the levels of these TGs 
(53.7, 54:5 and 54:6) and PCs (36:3 and 40:6) appeared 
to be elevated in samples of progressors compared to 
stable patients. This trend is consistent with the findings 
of Yan et  al. [13] and Kulkarni et  al. [14] and although 
their observations were based on comparisons between 
IPF and healthy controls, higher levels in progressive IPF 
could relate to more active disease process. Specifically, 
using a bleomycin (BLM) mouse model of pulmonary 
fibrosis, Kulkarni et  al. [14] observed unchanged levels 

Fig. 1  Total ion chromatograms for SONAR acquisitions in positive mode. The extracted ion chromatograms of spiked deuterium-labelled 
SPLASH LipidoMix standards in positive ion mode showing peaks corresponding to 15:0–18:1(d7) phosphatidylcholine (PC), 15:0–18:1(d7) 
phosphatidylethanolamine (PE), 15:0–18:1(d7) phosphatidylserine (PS), 15:0–18:1(d7) phosphatidylglycerol (PG), 15:0–18:1(d7) phosphatidylinositol 
(PI), 15:0–18:1(d7) phosphatidic acid (PA), 18:1(d7) lysophosphatidylcholine (LysoPC), 18:1(d7) lysophosphatidylethanolamine (LysoPE), 18:1(d7) 
cholesteryl ester (Chol Ester), 18:1(d7) monoglyceride (MG), 15:0–18:1(d7) diacylglycerol (DG), 15:0–18:1(d7)-15:0 triglyceride (TG), 18:1(d9) 
sphingomyelin (SM) and cholesterol (d7)
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of specific TGs (48:1, 52:1 and 54:2) consistent with our 
results, but reported a marked increase of approximately 
twofold in the relative content of PCs. This suggests that 
these species may play a role in the pathogenesis of BLM-
induced pulmonary fibrosis.

TGs along with diglycerides (DGs), are the most 
abundant lipids found in circulating plasma. Serum 
total TG has been reported as a biomarker of fatty 
acid metabolic disturbance [26]. TGs are stored in 
lipid droplet structures, formed through budding of 
the endoplasmic reticulum (ER), and are reported to 
induce the expression of endogenous ER stress markers 

Fig. 2  Statistical modelling used to discriminate diseased experimental groups. a PCA score plots generated from all stable (black) and progressor 
(red) and QC (green) samples in both modes of acquisition. The clustering of the pooled QC samples in each acquisition modes were shown 
encircled in green. b The OPLS-DA and c S-plots show comparisons between stable (black) versus progressors (red) plasma samples in the 
aforementioned acquisition modes. The ten features of interest in each group (encircled in blue) were exported into Progenesis QI software for 
identification

Table 2  Plasma lipids identified between stable and progressive 
IPF

MS mass spectrometry, TG triglyceride, PC phosphatidylcholine

MS mode Feature m/z Putative ID Fold change

Positive SONAR 878.8190 TG [52:1] 1.02

898.7870 TG [54:5] 1.85

896.7712 TG [54:6] 3.33

904.8352 TG [54:2] 1.05

822.7554 TG [48:1] 0.90

880.7468 TG [53:7] 2.32

834.6008 PC [40:6] 1.94

784.5847 PC [36:3] 2.18
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Fig. 3  Extracted ion chromatograms and ion intensity maps of the lipid adducts generated by Mass Lynx and HD Imaging software, respectively. 
phosphatidylcholine (PC) and triglycerides (TG) were extracted and their associated adducts [M+NH4]+, [M+K]+, [M+Na]+ and [M+H]+ are 
denoted by A, B, C and D, respectively
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(e.g. p-JNK, GRP 78) [27, 28]. Interestingly, ER stress is 
evident in alveolar epithelium of both human and mice 
with pulmonary fibrosis [29]. However, neither the 
mechanisms causing this stress, nor its contribution to 
fibrosis is well understood. Further investigation of the 
exact roles of TGs in IPF patients would be beneficial.

Unlike TGs, the functional role of PCs has been 
described in lung surfactant phospholipid metabolism. 
Pulmonary surfactant forms the lining of the epithelial 
air-contact surface of the lungs and are essential for the 
prevention of alveolar collapse during expiration. PC is 
the major phospholipid comprising around 80% of sur-
factant lipids and alterations in their composition can 
cause reduced elasticity, leading to an overall decrease 
in lung compliance [30]. Changes in the component 
phospholipids, including PCs have been described in 
bronchoalveolar fluids of animal models of rapidly 
developing pulmonary fibrosis [31]. The up-regulated 
PC in this study might be partially associated with 
greater epithelial injury in the progressive group rela-
tive to stable.

To understand the global dynamics of metabolite dif-
ferences in IPF, we performed a metabolic network analy-
sis. We found four networks enriched in the progressive 
IPF samples (Linoleic acid metabolism, alpha-Linolenic 
acid metabolism, Arachidonic acid metabolism, Glycer-
ophospholipid metabolism), which have been previously 
described in fibrotic lung [32, 33]. Based on these find-
ings, it has been proposed that there is a fine balance 
between lipid metabolism and wound healing mecha-
nisms leading to fibrosis onset and development in IPF 
[32].

Although a limitation in this study is its small cohort 
size and the lack of a healthy cohort, abnormalities in 
plasma lipids in IPF versus healthy controls have been 
previously described [13], 14] forming the basis of our 
lipidomic exploration. The biological significance per-
taining to the fold change differences will need to be 
further explored in larger cohorts and with functional 
studies.

Conclusion
In conclusion, this project successfully profiled plasma 
samples obtained from two groups of IPF patients using 
the SONAR acquisition approach enhancing the specific-
ity of unbiased lipid profiling derived from UPLC-QTOF-
MS. In particular, we have identified changes related to 
disease progression in lipid signatures such as TGs and 
PCs in IPF plasma samples as whole, which have previ-
ously been associated with abnormalities in lipid metabo-
lism through mitochondrial-beta oxidation pathways.
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