11 research outputs found
A practical guide to photoacoustic tomography in the life sciences
The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs
Ten-year mortality, disease progression, and treatment-related side effects in men with localised prostate cancer from the ProtecT randomised controlled trial according to treatment received
Background
The ProtecT trial reported intention-to-treat analysis of men with localised prostate cancer randomly allocated to active monitoring (AM), radical prostatectomy, and external beam radiotherapy.
Objective
To report outcomes according to treatment received in men in randomised and treatment choice cohorts.
Design, setting, and participants
This study focuses on secondary care. Men with clinically localised prostate cancer at one of nine UK centres were invited to participate in the treatment trial comparing AM, radical prostatectomy, and radiotherapy.
Intervention
Two cohorts included 1643 men who agreed to be randomised and 997 who declined randomisation and chose treatment.
Outcome measurements and statistical analysis
Analysis was carried out to assess mortality, metastasis and progression and health-related quality of life impacts on urinary, bowel, and sexual function using patient-reported outcome measures. Analysis was based on comparisons between groups defined by treatment received for both randomised and treatment choice cohorts in turn, with pooled estimates of intervention effect obtained using meta-analysis. Differences were estimated with adjustment for known prognostic factors using propensity scores.
Results and limitations
According to treatment received, more men receiving AM died of PCa (AM 1.85%, surgery 0.67%, radiotherapy 0.73%), whilst this difference remained consistent with chance in the randomised cohort (p = 0.08); stronger evidence was found in the exploratory analyses (randomised plus choice cohort) when AM was compared with the combined radical treatment group (p = 0.003). There was also strong evidence that metastasis (AM 5.6%, surgery 2.4%, radiotherapy 2.7%) and disease progression (AM 20.35%, surgery 5.87%, radiotherapy 6.62%) were more common in the AM group. Compared with AM, there were higher risks of sexual dysfunction (95% at 6 mo) and urinary incontinence (55% at 6 mo) after surgery, and of sexual dysfunction (88% at 6 mo) and bowel dysfunction (5% at 6 mo) after radiotherapy. The key limitations are the potential for bias when comparing groups defined by treatment received and changes in the protocol for AM during the lengthy follow-up required in trials of screen-detected PCa.
Conclusions
Analyses according to treatment received showed increased rates of disease-related events and lower rates of patient-reported harms in men managed by AM compared with men managed by radical treatment, and stronger evidence of greater PCa mortality in the AM group.
Patient summary
More than 95 out of every 100 men with low or intermediate risk localised prostate cancer do not die of prostate cancer within 10 yr, irrespective of whether treatment is by means of monitoring, surgery, or radiotherapy. Side effects on sexual and bladder function are better after active monitoring, but the risks of spreading of prostate cancer are more common
Functional and quality of life outcomes of localised prostate cancer treatments (prostate testing for cancer and treatment [ProtecT] study)
Objective
To investigate the functional and quality of life (QoL) outcomes of treatments for localised prostate cancer and inform treatment decision-making.
Patients and Methods
Men aged 50–69 years diagnosed with localised prostate cancer by prostate-specific antigen testing and biopsies at nine UK centres in the Prostate Testing for Cancer and Treatment (ProtecT) trial were randomised to, or chose one of, three treatments. Of 2565 participants, 1135 men received active monitoring (AM), 750 a radical prostatectomy (RP), 603 external-beam radiotherapy (EBRT) with concurrent androgen-deprivation therapy (ADT) and 77 low-dose-rate brachytherapy (BT, not a randomised treatment). Patient-reported outcome measures (PROMs) completed annually for 6 years were analysed by initial treatment and censored for subsequent treatments. Mixed effects models were adjusted for baseline characteristics using propensity scores.
Results
Treatment-received analyses revealed different impacts of treatments over 6 years. Men remaining on AM experienced gradual declines in sexual and urinary function with age (e.g., increases in erectile dysfunction from 35% of men at baseline to 53% at 6 years and nocturia similarly from 20% to 38%). Radical treatment impacts were immediate and continued over 6 years. After RP, 95% of men reported erectile dysfunction persisting for 85% at 6 years, and after EBRT this was reported by 69% and 74%, respectively (P < 0.001 compared with AM). After RP, 36% of men reported urinary leakage requiring at least 1 pad/day, persisting for 20% at 6 years, compared with no change in men receiving EBRT or AM (P < 0.001). Worse bowel function and bother (e.g., bloody stools 6% at 6 years and faecal incontinence 10%) was experienced by men after EBRT than after RP or AM (P < 0.001) with lesser effects after BT. No treatment affected mental or physical QoL.
Conclusion
Treatment decision-making for localised prostate cancer can be informed by these 6-year functional and QoL outcomes
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Light Emitting Diodes Based Photoacoustic and Ultrasound Tomography: Imaging Aspects and Applications
Tomographic photoacoustic and ultrasound imaging is essential for isotropic spatial resolution and to obtain a full view of the target tissue. However, tomographic systems with pulsed laser sources and custom made transducer arrays are expensive. Additionally, there are other factors that limit the wide use of photoacoustic and ultrasound tomographic systems which include the size of the tomographic systems that use pulsed laser and the laser safety issues. A cost-effective, compact and safe photoacoustic and ultrasound tomographic system can find several imaging applications both in clinics and small animal labs. LED-based photoacoustic imaging has shown the potential to bring down the cost, enable faster imaging with high pulse repetition rate and is safer when compared to pulsed lasers. The conventional US system can be adopted for photoacoustic imaging by adding a light source to it. Hence, linear transducer arrays are preferred as they are cheaper and allow faster imaging. The combination of LED-based illumination and linear transducer array-based tomographic imaging can be a cost-effective alternative to current tomographic imaging, especially in point-of-care applications
Radiotherapy for prostate cancer: is it ‘what you do’ or ‘the way that you do it’? A UK perspective on technique and quality assurance
Aims:
The treatment of prostate cancer has evolved markedly over the last 40 years, including radiotherapy, notably with escalated dose and targeting. However, the optimal treatment for localised disease has not been established in comparative randomised trials. The aim of this article is to describe the history of prostate radiotherapy trials, including their quality assurance processes, and to compare these with the ProtecT trial.
Materials and methods:
The UK ProtecT randomised trial compares external beam conformal radiotherapy, surgery and active monitoring for clinically localised prostate cancer and will report on the primary outcome (disease-specific mortality) in 2016 following recruitment between 1999 and 2009. The embedded quality assurance programme consists of on-site machine dosimetry at the nine trial centres, a retrospective review of outlining and adherence to dose constraints based on the trial protocol in 54 participants (randomly selected, around 10% of the total randomised to radiotherapy, n = 545). These quality assurance processes and results were compared with prostate radiotherapy trials of a comparable era.
Results:
There has been an increasingly sophisticated quality assurance programme in UK prostate radiotherapy trials over the last 15 years, reflecting dose escalation and treatment complexity. In ProtecT, machine dosimetry results were comparable between trial centres and with the UK RT01 trial. The outlining review showed that most deviations were clinically acceptable, although three (1.4%) may have been of clinical significance and were related to outlining of the prostate. Seminal vesicle outlining varied, possibly due to several prostate trials running concurrently with different protocols. Adherence to dose constraints in ProtecT was considered acceptable, with 80% of randomised participants having two or less deviations and planning target volume coverage was excellent.
Conclusion:
The ProtecT trial quality assurance results were satisfactory and comparable with trials of its era. Future trials should aim to standardise treatment protocols and quality assurance programmes where possible to reduce complexities for centres involved in multiple trials