128 research outputs found

    Delayed administration of VEGF rescues spinal motor neurons from death with a short effective time frame in excitotoxic experimental models in vivo

    Get PDF
    VEGF (vascular endothelial growth factor) prevents neuronal death in different models of ALS (amyotrophic lateral sclerosis), but few studies have addressed the efficacy of VEGF to protect motor neurons after the onset of symptoms, a critical point when considering VEGF as a potential therapeutic target for ALS. We studied the capability of VEGF to protect motor neurons after an excitotoxic challenge in two models of spinal neurodegeneration in rats induced by AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) administered either chronically with osmotic minipumps or acutely by microdialysis. VEGF was administered through osmotic minipumps in the chronic model or injected intracerebroventricularly in the acute model, and its effects were assessed by immunohistochemical and histological analyses and motor performance tests. In the chronic model, VEGF stopped the progression of the paralysis and protected motor neurons when administered after AMPA before the onset of the motor symptoms, whereas no protection was observed when administered after the onset. VEGF was also protective in the acute model, but with a short time window, since the protection was effective when administered 1 h but not 2 h after AMPA. Our results indicate that while VEGF has an indubitable neuroprotective effect, its therapeutic potential for halting or delaying the progression of motor neuron loss in ALS would likely have a short effective time frame

    Formação de classes equivalentes mediante regras verbais e formato manual

    Get PDF
    Se analizó la formación de clases de estímulos equivalentes vía reglas verbales mediante la utilización de un procedimiento de igualación de la muestra en un formato de "papel y lápiz" para el entrenamiento y evaluación de discriminaciones condicionales. Participaron voluntariamente 36 estudiantes universitarios; el grupo experimental recibió entrenamiento de línea base vía reglas verbales, pruebas de mantenimiento de línea base y pruebas de equivalencia; el grupo control sólo recibió las pruebas. El instrumento desarrollado mostró ser efectivo. Un número considerable de participantes del grupo experimental logró formar dos clases de estímulos equivalentes, a diferencia del grupo control en que ninguno de los participantes formó las clases. El desarrollo de procedimientos efectivos con "papel y lápiz" y reglas, podría apoyar la enseñanza de habilidades básicas de lectura en poblaciones grandes con economía de tiempo y dinero

    Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%–3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish valid correlations between cellular alterations and motor behavior, although improvements are still necessary in order to produce a reliable and integrative model that accurately reproduces the cellular mechanisms of motoneuron degeneration in ALS

    Computational Exploration of Lexical Development in Down Syndrome

    Get PDF
    Research on lexical development in Down syndrome (DS) has emphasized a dissociation between language comprehension and production abilities, with production of words being relatively more impaired than comprehension. Current theories stress the role of associative learning on lexical development. However, there have been no attempts to explain the atypical lexical development in DS based on atypical associative learning. The long-term potentiation (LTP) and long-term depression (LTD) of synapses, underlying associative learning, are altered in DS. Here we present a neural network model that instantiates notions from neurophysiological studies to account for the disparities between lexical comprehension and production in DS. Our simulations show that an atypical LTP/LTD balance affects comprehension and production differently in an associative model of lexical development

    From altered synaptic plasticity to atypical learning:a computational model of Down syndrome

    Get PDF
    Learning and memory rely on the adaptation of synaptic connections. Research on the neurophysiology of Down syndrome has characterized an atypical pattern of synaptic plasticity with limited long-term potentiation (LTP) and increased long-term depression (LTD). Here we present a neurocomputational model that instantiates this LTP/LTD imbalance to explore its impact on tasks of associative learning. In Study 1, we ran a series of computational simulations to analyze the learning of simple and overlapping stimulus associations in a model of Down syndrome compared with a model of typical development. Learning in the Down syndrome model was slower and more susceptible to interference effects. We found that interference effects could be overcome with dedicated stimulation schedules. In Study 2, we ran a second set of simulations and an empirical study with participants with Down syndrome and typically developing children to test the predictions of our model. The model adequately predicted the performance of the human participants in a serial reaction time task, an implicit learning task that relies on associative learning mechanisms. Critically, typical and atypical behavior was explained by the interactions between neural plasticity constraints and the stimulation schedule. Our model provides a mechanistic account of learning impairments based on these interactions, and a causal link between atypical synaptic plasticity and associative learning

    The past, present and future challenges in epilepsy related and sudden deaths and biobanking.

    Get PDF
    Awareness and research on epilepsy-related deaths (ERD), in particular Sudden Unexpected Death in Epilepsy (SUDEP), have exponentially increased over the last two decades. Most publications have focused on guidelines that inform clinicians dealing with these deaths, educating patients, potential risk factors and mechanisms. There is a relative paucity of information available for pathologists who conduct these autopsies regarding appropriate post-mortem practice and investigations. As we move from recognizing SUDEP as the most common form of ERD toward in-depth investigations into its causes and prevention, health professionals involved with these autopsies and post-mortem procedure must remain fully informed. Systematizing a more comprehensive and consistent practice of examining these cases will facilitate 1) more precise determination of cause of death, 2) identification of SUDEP for improved epidemiological surveillance (the first step for an intervention study), and 3) bio-banking and cell-based research. This article reviews how pathologists and healthcare professionals have approached ERD, current practices, logistical problems and areas to improve and harmonize. The main neuropathology, cardiac and genetic findings in SUDEP are outlined, providing a framework for best practices, integration of clinical, pathologic and molecular genetic investigations in SUDEP, and ultimately prevention

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
    corecore