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Abstract 

Research on lexical development in Down syndrome (DS) has 
emphasized a dissociation between language comprehension 
and production abilities, with production of words being 
relatively more impaired than comprehension. Current 
theories stress the role of associative learning on lexical 
development. However, there have been no attempts to 
explain the atypical lexical development in DS based on 
atypical associative learning. The long-term potentiation 
(LTP) and long-term depression (LTD) of synapses, 
underlying associative learning, are altered in DS. Here we 
present a neural network model that instantiates notions from 
neurophysiological studies to account for the disparities 
between lexical comprehension and production in DS. Our 
simulations show that an atypical LTP/LTD balance affects 
comprehension and production differently in an associative 
model of lexical development. 
 
Keywords: Down syndrome; lexical development; 
associative learning; comprehension/production asymmetries; 
neurocomputational model. 

 

Down syndrome (DS) is the most common genetic cause 

of intellectual disability. There has been extensive research 

in behavioral and neurophysiological sciences to understand 

how DS affects cognitive development. 

One of the behavioral domains that has attracted 

particular attention in DS is language development, and 

specifically, lexical development. This is interesting because 

lexical development has been argued to be based on 

associative learning mechanisms (McMurray, Horst, & 

Samuelson, 2012), while studies on the neurophysiology of 

DS have consistently described an altered mechanism for 

synaptic adaptation (Begenisic et al., 2014; Scott-McKean 

& Costa, 2011) which lies at the core of associative 

learning. Nevertheless, the role of atypical associative 

learning in lexical development in DS has not been 

explored.  

In this paper, we address this gap by describing a 

neurobiologically informed computational model that 

implements an altered associative learning mechanism 

described in DS to account for the atypical lexical 

development in DS. Our focus is on explaining an apparent 

dissociation between lexical comprehension and production 

in DS. We want to address to what extent this observed 

dissociation is based on general atypical associative learning 

mechanisms. Our hypothesis is that interactions between 

experience and the neurophysiological constraints of DS are 

sufficient to account for the differences in performance 

between lexical comprehension and production in this 

population. 

This hypothesis is in accordance with a domain-general 

view of cognitive development, where the process of 

associative learning is affected overall, but depending on the 

demands of the task (i.e., comprehension or production) the 

observed outcomes are qualitatively different. We test this 

hypothesis in our computational model of lexical 

development. Therefore, a second aim of this paper is to 

provide a computational model of atypical lexical 

acquisition, biologically informed. 

Lexical development in Down Syndrome (The 

Process) 

Language development in DS, as in other developmental 

disorders, has attracted considerable attention for both 

theoretical and practical reasons. On the one hand, 

descriptions emphasizing a relatively greater impairment in 

language abilities in DS (Chapman & Hesketh, 2000; Rice, 

Warren, & Betz, 2005; Vicari et al., 2004) have motivated 

theoretical debate on the nature of language as a process 

resulting from a cognitive system with domain specific vs. 

domain general components (Marcus & Rabagliati, 2006; 

Stojanovik, 2014; Thomas & Karmiloff-Smith, 2005). On 

the other hand, there is interest in understanding atypical 

language trajectories in DS to develop better interventions 

and minimize dysfunction in these patients. Among the 

different domains of language development, in this review 

we focus on lexical development. 

Lexical acquisition is traditionally studied through the 

number of words produced and number of words 

comprehended in a certain age range. These numbers are 

lower in DS when compared to typically developing 

children (TD) of the same chronological age, but the 

discrepancy between DS and TD diminishes when DS 

individuals are compared with TD children of the same 

mental age (i.e., level of non-verbal cognitive ability) 

(Galeote, Soto, Sebastián, Rey, & Checa, 2012).  

In DS it is commonly reported that language 

comprehension abilities exceed language production 

abilities (Galeote et al., 2012; Kay-Raining Bird, Chapman, 

& Schwartz, 2004; Vicari et al., 2004). This pattern 

replicates a canonical finding in research of lexical 

development in TD: the number of words comprehended 

initially exceeds the number of words produced (McMurray 
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et al., 2012). However, critically, a number of studies have 

found that the discrepancy between the comprehension and 

production of words in DS is greater than expected on the 

basis of mental age, with comprehension at or near mental-

age-typical levels, but production selectively impaired 

(Kay-Raining Bird et al., 2004; Vicari et al., 2004). 

Some studies also suggest that production and 

comprehension of words in DS follow qualitatively different 

developmental trajectories (Chapman, Hesketh, & Kistler, 

2002; Galeote et al., 2012), with one study reporting that 

comprehension of words in DS even exceeded the level of 

non-verbal mental age (Glenn & Cunningham, 2005). 

However, in contrast to these results, other evidence has 

suggested that in DS both expressive and receptive language 

are significantly more impaired than what is expected on the 

basis of mental age (Bello, Onofrio, & Caselli, 2014). 

Due to conflicting results it has been difficult to 

characterize a unique profile of cognitive and linguistic 

abilities in DS. High inter-individual variability in the DS 

population (Karmiloff-Smith et al., 2016), along with 

methodological constraints including small sample size and 

the use of different measures and procedures, may explain 

some disparities between studies. In an effort to analyze a 

larger sample of DS individuals in verbal skills, Næss and 

colleagues (2011) meta-analyzed data reported by different 

research groups between 1988 and 2009, and found that 

performance of children with DS is in line with TD 

children, matched by mental age, in receptive vocabulary 

but is significantly impaired in measures of expressive 

vocabulary. 

A number of questions arise from this apparently uneven 

profile between lexical comprehension and production, and 

its failed predictability from the overall level of cognitive 

development: is lexical development in DS only delayed or 

deviated from the TD pattern? Is there a dissociation 

between lexical comprehension and production in DS? Is it 

possible to account for these results with a domain general 

approach? 

Lexical Acquisition and Associative Learning (The 

Theory) 

There is a vast literature on lexical acquisition and the study 

of word learning is at the core of this field. Word learning is 

viewed as the process by which we learn to link a 

phonological representation with a category of objects. 

Word learning involves a sequence of complex processes; 

the learner faces the challenge of selecting discrete 

phonological representations, picking a specific object in a 

cluttered visual scene, and creating meaningful 

representations linking the sounds and the visual objects. 

Attempts to explain how the cognitive system deals with 

such a complexity have been based on three theoretical 

accounts. First, under the lexical constraints account, word 

learning is guided by a set of default assumptions (i.e., 

constraints) on hypotheses (Woodward & Markman, 1998). 

For example, the mutual exclusivity constraint describes the 

process of inferring which word corresponds with which 

object on the basis of knowing already the names of the 

other objects present in the visual scene. 

Second, the social-pragmatic account argues that children 

use cues such as the speaker’s (e.g., caregiver) gaze or 

intention to learn the correspondences between sounds and 

objects (see Ambridge & Lieven, 2011). Third, the 

associative learning account explains word learning as a 

process governed by the domain-general rules of learning. 

The focus is on the linkages created between sounds and 

objects without appealing to any other prerequisites such as 

lexical constraints or social cues, even when these can exert 

a modulatory role on word learning. In recent years, this 

account has been formalized and tested through 

computational models (Mayor & Plunkett, 2010; McMurray 

et al., 2012, Westermann & Mareschal, 2014). 

Computational simulations have provided precise 

descriptions on how the qualitative properties of lexical 

development, empirically observed, as is the initial 

asymmetry between comprehension and production, the 

vocabulary spurt, and mutual exclusivity, emerge in a 

system that operates by establishing associations with 

language-like inputs (e.g., McMurray et al., 2012). 

In this paper, we focus on analyzing the disruptive effects 

that atypical mechanisms of associative learning have on 

word learning for the DS population. For this reason, our 

approach is based on the model proposed by McMurray, 

Horst and Samuelson (2012), we call this the MHS model 

from here on. We selected this model for the following 

reasons: first, the theoretical account underlying this model 

distils the process to its basic computational components 

and develops an approach focused on the role of associative 

learning, and this is convenient for our purpose of analyzing 

atypical forms of associative learning on lexical 

development. Second, the architecture of this model is well 

suited to incorporating our computational formalization of 

biological descriptions of atypical learning in DS. Third, by 

building on previous work, we extend this previous and well 

accepted model to account for atypical behavior and in this 

extension (in terms of behavior, and populations) additional 

evidence is provided for the associative account of word 

learning. 

Associative Learning in Down Syndrome (The 

Underlying Mechanism) 

From a neurobiological perspective, associative learning 

results from the adaptation of synaptic connections between 

neurons. Such adaptations are activity dependent; following 

Hebbian descriptions high co-activation between pre- and 

post-synaptic neurons lead to a strengthening of the synaptic 

connection. Complementary to the Hebbian account, 

empirical research has shown that decays in the efficacy of 

synaptic connections are also triggered by the co-activation 

between the pre- and post-synaptic units. A co-activation 

threshold is assumed to exist (Bienenstock, Cooper, & 

Munro, 1982) so that below-threshold co-activation values 

produce decays in the synaptic efficacy (i.e. long-term 

depression or LTD) and above-threshold co-activation 



values lead to increase the synaptic efficacy (i.e., long-term 

potentiation or LTP). 

A vast literature on the biological bases of associative 

learning in DS has described an atypical balance between 

LTP and LTD in different mouse models of this syndrome. 

When compared with euploid control mice, LTP is limited 

and LTD is increased in DS (Begenisic et al., 2014; Scott-

McKean & Costa, 2011; Siarey, Villar, Epstein, & 

Galdzicki, 2005). This pattern of synaptic adaptation 

functionally corresponds with an increased co-activation 

threshold, where the same level of stimulation produces 

limited gains and increased decays in the connection 

strengths in DS relative to TD. An increased co-activation 

threshold has been proposed for other populations that show 

cognitive impairment (Meredith & Mansvelder, 2010). 

While considerable progress has been made in the study 

of LTP/LTD in DS, with an emphasis on the design of 

pharmacological interventions (e.g., Begenisic et al., 2014), 

building the bridge from the basic level of altered 

neurophysiology to the high level of cognitive function has 

seen less progress. For example, it is not clear what is the 

role of the altered LTP/LTD balance on language 

development in DS. Descriptions of the exact way by which 

biological differences contribute to language impairments in 

different populations (e.g., TD, Williams syndrome, fragile 

X syndrome) will inform us on what is common across 

populations, the nature of language impairments, and how 

the language capacity is vulnerable (Rice et al., 2005). 

Given the evidence from two fields of research, one 

informed by behavioral studies suggesting a preserved and 

marked asymmetry between comprehension and production 

of words, and another informed by neurophysiological 

studies describing an altered mechanism for associative 

learning, and in the context of an associative learning 

account to word learning, in this paper our focus is on 

exploring, the role of atypical associative learning 

mechanisms in word learning in DS. 

Computational Model 

Overview and Architecture The present model is based on 

the MHS model. It is designed to analyze the role of 

associative learning in the establishment of correspondences 

between auditory word forms and visual objects. In the 

following, we describe our model and we indicate the 

differences between the present model and the MHS model. 

The present model is composed of a neural network with 

three layers of units. Two of these layers represent 

processing in the auditory and visual systems. These layers 

are used to present input patterns to the network and to 

collect responses. These layers are not directly connected 

with each other; instead they are indirectly connected 

through a third layer of “lexical units” (see Figure 1). 

One assumption of this approach is that the auditory and 

visual systems can already categorize objects and select 

discrete elements from the environment. The units in the 

visual and auditory layers are localist; each unit represent 

only one stimulus. 

 
 

Figure 1: Architecture of the neural network with the 

visual, auditory and lexical layers. Only a few connections 

are shown to represent connectivity from auditory and 

visual units to lexical units. 

 

The auditory and visual layers have 40 units each. Thus, 

40 is the total number of words that the network is able to 

learn. The lexical layer contains 100 units. There are more 

lexical units than would be needed to learn 40 words –this 

allows for better learning (McMurray et al., 2012). Since the 

model could initially randomly associate two different 

inputs with the same lexical unit, increasing the number of 

lexical units prevents mismappings and increases 

discrimination of words (McMurray et al., 2012). 

The architecture of the model is similar to the one 

presented by McMurray and colleagues (2012), but a key 

difference is in the number of units. The MHS model has 35 

input units in the auditory and visual layers, and 500 lexical 

units. Our model incorporates more input units and fewer 

lexical units; thus our model requires less computational 

power to simulate the learning of a higher number of words. 

Each unit in the input layers is connected to all the units 

in the lexical layer. These connections are bidirectional and 

their weights are initially randomized. In the MHS model, 

connections are not functionally bidirectional, since they use 

a different temperature parameter for feed-forward and 

feed-back connections. 

Activation values of units range between 0 and 1. The 

activation values of the lexical units are initially normalized, 

such that the sum of all activation values equals 1. When an 

auditory or visual stimulus is presented to the input layers, 

the unit that represents this stimulus is activated with a 

value of 1, and all remaining inputs are set to 0. The 

activation flows through the connections and reaches the 

lexical layer, which then computes the net input as the sum 

of activations coming from the auditory and visual inputs 

weighted by the corresponding connection values. The 

activation values in the lexical layer then go through a 

process of normalization (Equation 1), during 7 cycles. In 

our model 7 cycles are optimal to stabilize 100 lexical units. 

It is not clear how many cycles the MHS model requires.  



 

                                (1) 

    

The activation of the lexical units then feeds back to the 

auditory and visual layers; these units then sum the net input 

coming from the lexical layer with the activation from direct 

stimulation. This process allows integration of bottom-up 

with top-down information. Then, the connection weights 

are updated according to the rule described below.  

 

Learning The MHS model incorporates a Hebbian learning 

algorithm that strengthens connections between co-acvtive 

units. The decay terms in the MHS model weaken the 

connections when either the lexical-, or the input units are 

inactive. In our model, the learning algorithm is designed to 

capture the functional differences in synaptic adaptation 

between TD and DS, as informed by studies with mouse 

models. Thus, both strengthening and weakening of 

connections result from the co-activation of units. Our 

algorithm incorporates a co-activation threshold (θ). Those 

co-activation values that surpass θ lead to gains in the 

connection weights, and co-activation values below θ lead 

to decays in connection weights. The simulations of DS use 

a relatively higher value for θ than simulations of TD (i.e., θ 

= 0.9 for DS and 0.7 for TD). Higher values of θ restrict 

connection strengthening and increase connection decay; in 

this way we simulate the atypical pattern of increased LTD 

and limited LTP that has been described in DS. 

To stabilize changes in connection weights we also 

include a self-adjusting parameter called lambda (λ). It 

keeps weights between 0 and 1, by reducing changes as 

weights approach 1. As shown in Equation 2, for above-θ 

values, λ depends on the difference between the co-

activation and the current connection weight. It is computed 

by subtracting the value of the current weight from the 

current co-activation. For below-θ values, lambda acquires a 

negative value proportional to the current weight. 

 

If (ai*aj)> θ,  Then λ = (ai*aj) – Wij              (2) 

              Else                 λ = –Wij 

 

    Lambda is a multiplicative parameter in the final learning 

algorithm (Equation 3). 

 

Wij(t+1) = Wij(t) + λ ß (ai*aj)                    (3) 

 

Changes in weights (Wij) then depend on the co-activation 

value (ai*aj) modulated by the interaction between the 

current state of the connection and the co-activation 

computed by λ, and a learning rate (ß). We ran two sets of 

simulations for DS. In the first set (DS-1) we used a 

relatively lower ß in DS compared to TD simulations to 

capture additional neurophysiological abnormalities in DS 

with impact on computing power, namely, a reduction of 

synapse density and inhibitory predominance (Dierssen, 

2012). In the second set of simulations of DS (DS-2) we 

kept the same value ß as the one used in TD. We did this to 

be able to compare and explore the effects of an increased θ 

alone vs. increased θ and lower ß. (ß = 0.001 for TD and 

DS-2; and ß = 0.0005 for DS-1). 

Simulations 

Training One auditory object was presented during each 

training trial along with many visual objects (usually five). 

These presentations simulate natural scenes where, in a 

discrete moment, one auditory word form is presented 

(spoken) to the child in the presence of a cluttered visual 

scene. For example, the first time a child hears the word 

/cat/, she can observe a visual scene that contains a cat, but 

also contains a dog, a container with milk, a ball of yarn, 

etc. Thus, the word /cat/ could initially refer to any of these 

visual objects. This problem of referential ambiguity needs 

to be solved by the child across many trials. Let’s consider a 

second trial when the word /cat/ is presented again, but now 

the visual scene contains the cat, the container with milk, a 

pillow, and a table. If the child is sensitive to the 

environmental regularities, across many trials she will learn 

the correct correspondences between auditory words and 

visual objects (Smith & Yu, 2008). But this is a slow 

process that requires numerous trials. To capture this 

process, in our simulations, each time that an auditory word 

was presented, the correct visual object was presented with 

another 4 different visual objects. The additional visual 

objects changed for every trial. We simulated the learning of 

40 words, by presenting each auditory-visual pairing a total 

of 20000 times. 

 

Testing We presented trials to evaluate comprehension and 

production of words. Tests for comprehension were 

designed, as in the MHS model, to simulate a traditional test 

of lexical comprehension, The N-alternative forced choice, 

where a number of different visual objects are presented to 

the child and she is asked to point or select one in particular 

(e.g., where is the pencil? which one is the pencil?). In our 

simulations one auditory stimulus (e.g., pencil) was active, 

as well as 4 visual objects (e.g., pencil, cat, table, glass) in 

the visual layer. Activation flowed from inputs to the lexical 

layer and back. Then the unit in the visual layer with the 

highest activation (e.g., pencil) was taken as the response of 

the model. In this way, comprehension was conceptualized 

as the correct activation of the visual object in the presence 

of one particular auditory word form. 

Following again simulations in the MHS model, tests for 

production of words were designed to simulate the “child 

says” measures of the MacArthur-Bates Communicative 

Development Inventory. In these trials one single visual 

object was active and all possible auditory word forms were 

active. Activation flowed from inputs to the lexical units 

and back, then the auditory unit with the highest activation 

value was taken as the response of the model. Production 

then corresponded to evaluating the activation of auditory 

word forms in the presence of a particular visual object. 



The comprehension and production test trials were run 

after every 50 training epochs (each epoch was composed of 

the presentation of the 40 training trials). A total of 400 

measures of comprehension and production were obtained 

for each simulation. We ran 20 simulations of TD, 20 of 

DS-1 and 20 of DS-2. 

Results and Discussion 

Figure 2 shows the mean values of words comprehended 

and produced for TD, DS-1, and DS-2. The standard 

deviation values are shown in the error bars (gray areas).  
Our simulation of TD (Fig. 2A) shows that 

comprehension surpassed production in the early stages of 

learning; then, from the test trial 51 until the end of the 

simulation, comprehension and production were matched, 

and show complete learning of vocabulary. 

The simulations of DS-1 and DS-2 (Fig. 2 B and C) show 

a qualitatively different trajectory of lexical acquisition. 

Some aspects shown by these simulations are of particular 

interest in the context of our theoretical and empirical 

review. First, performance in the comprehension task is 

always above the performance in the production task. 

Moreover, production of words never reaches the maximum 

possible value of 40 words. Second, DS-1 is more affected 

than DS-2. DS-1 used a higher co-activation threshold with 

a lower learning rate, while DS-2 used the higher co-

activation threshold with a high learning rate. Data from 

DS-2 suggests that the atypical synaptic learning process in 

DS has a direct consequence on lexical development on its 

own, and the difference between DS-1 and DS-2 suggests 

that the learning rate has an additional effect. Third, the 

standard deviations show that the performance in the DS 

groups was more variable than the performance in TD. DS-1 

showed the highest variability. These patterns replicate the 

high inter-individual variability usually observed in DS 

compared with TD (see Karmiloff-Smith et al., 2016). 

Comprehension and production tests were different tasks 

in our simulations. Comprehension required the selection of 

a visual stimulus from a sample of a few objects, while 

production, a more demanding task, required the selection 

of an auditory stimulus from the total number of auditory 

word forms. These tasks were designed to reproduce the 

top-down and bottom-up interactions that a child processes 

when she produces names vs. when she comprehends 

auditory words. Then, in our model, the asymmetries 

between comprehension and production are (partially) 

explained by the properties of the tasks. Remarkably, the 

disparity between comprehension and production in TD was 

overcome as training continued, but this disparity persisted 

for the DS simulations, thus pointing to the atypical 

associative learning mechanism as an explanation for the 

persistence and more marked disparity between 

comprehension and production of words in DS. 

Other factors may as well contribute to the lexical 

comprehension/production asymmetry in DS, such as an 

atypical physical development that affects correct 

articulation of words and therefore restricts experience with 

lexical production. Our model, however, shows that the 

atypical pattern of synaptic strengthening directly affects 

lexical development. 

Our approach supports a domain-general view of 

cognitive development, and we argue that it also strengthens 

the associative learning account to lexical development, 

since it explains a pattern of uneven development of lexical 

abilities in Down syndrome as a result of an altered domain-

Figure 2: Mean values of comprehension and production across the 400 test trials for TD (Panel A), DS-1 (Panel B) 

and DS-2 (Panel C). The values from the three populations appear for comparison purposes in Panel D. Gray areas in 

Panels A, B and C show the standard deviation. 



general mechanism in combination with the properties of 

the behavioral task. 
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