353 research outputs found
Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic
system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed
gaseous fumarole Hg(fum)
T , plume gaseous elemental Hg(g)
0 and plume particulate Hg(p)
II were obtained at
fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on HgT/SO2 in condensed fumarolic gases
and plumes, range from 2.5 to 10.1 kg yâ1, in agreement with published values [Ferrara, R., Mazzolai, B.,
Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the
Mediterranean Basin. Sci. Total Environ. 259(1â3), 115â121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A.,
Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa
Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg(p)
II increases with distance
from the fumarole vent, at the expense of Hg(g)
0 and indicates significant in-plume oxidation and
condensation of fumarole Hg(fum)
T .
Relative to the NIST SRM3133 Hg standard, the stable isotopic compositions of Hg are ÎŽ202Hg(fum)
T =â0.74â°Â±0.18
(2SD, n=4) for condensed gaseous fumarole Hg(fum)
T , ÎŽ202Hg(g)
0 =â1.74â°Â±0.36 (2SD, n=1) for plume gaseous
elemental Hg(g)
0 at the F0 fumarole, and ÎŽ202Hg(p)
II =â0.11â°Â±0.18 (2SD, n=4) for plume particulate Hg(p)
II . The
enrichment of Hg(p)
II in the heavy isotopes and Hg(g)
0 in the light isotopes relative to the total condensed fumarolic
Hg(fum)
T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas
expulsion inambient T° atmosphere. A first order Rayleigh equilibriumcondensation isotope fractionation model
yields a fractionation factor αcond-gas of 1.00135±0.00058
Calculation of Spectral Darkening and Visibility Functions for Solar Oscillations
Calculations of spectral darkening and visibility functions for the
brightness oscillations of the Sun resulting from global solar oscillations are
presented. This has been done for a broad range of the visible and infrared
continuum spectrum. The procedure for the calculations of these functions
includes the numerical computation of depth-dependent derivatives of the
opacity caused by p modes in the photosphere. A radiative-transport code was
used for this purpose to get the disturbances of the opacities from temperature
and density fluctuations. The visibility and darkening functions are obtained
for adiabatic oscillations under the assumption that the temperature
disturbances are proportional to the undisturbed temperature of the
photosphere. The latter assumption is the only way to explore any opacity
effects since the eigenfunctions of p-mode oscillations have not been obtained
so far. This investigation reveals that opacity effects have to be taken into
account because they dominate the violet and infrared part of the spectrum.
Because of this dominance, the visibility functions are negative for those
parts of the spectrum. Furthermore, the darkening functions show a
wavelength-dependent change of sign for some wavelengths owing to these opacity
effects. However, the visibility and darkening functions under the assumptions
used contradict the observations of global p-mode oscillations, but it is
beyond doubt that the opacity effects influence the brightness fluctuations of
the Sun resulting from global oscillations
Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime
Convection in stars excites resonant acoustic waves which depend on the sound
speed inside the star, which in turn depends on properties of the stellar
interior. Therefore, asteroseismology is an unrivaled method to probe the
internal structure of a star. We made a seismic study of the metal-poor
subgiant star nu Indi with the goal of constraining its interior structure. Our
study is based on a time series of 1201 radial velocity measurements spread
over 14 nights obtained from two sites, Siding Spring Observatory in Australia
and ESO La Silla Observatory in Chile. The power spectrum of the high precision
velocity time series clearly presents several identifiable peaks between 200
and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09
uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been
identified with amplitudes in the range 53 to 173 cm/s. The mode damping time
is estimated to be about 16 days (1-sigma range between 9 and 50 days),
substantially longer than in other stars like the Sun, the alpha Cen system or
the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte
The non-detection of oscillations in Procyon by MOST: is it really a surprise?
We argue that the non-detection of oscillations in Procyon by the MOST
satellite reported by Matthews et al. (2004) is fully consistent with published
ground-based velocity observations of this star. We also examine the claims
that the MOST observations represent the best photometric precision so far
reported in the literature by about an order of magnitude and are the most
sensitive data set for asteroseismology available for any star other than the
Sun. These statements are not correct, with the most notable exceptions being
observations of oscillations in alpha Cen A that are far superior. We further
disagree that the hump of excess power seen repeatedly from velocity
observations of Procyon can be explained as an artefact caused by gaps in the
data. The MOST observations failed to reveal oscillations clearly because their
noise level is too high, possibly from scattered Earthlight in the instrument.
We did find an excess of strong peaks in the MOST amplitude spectrum that is
inconsistent with a simple noise source such as granulation, and may perhaps
indicate oscillations at roughly the expected level.Comment: 6 pages, accepted for publication in A&A Letter
PHIL photoinjector test line
LAL is now equiped with its own platform for photoinjectors tests and
Research and Developement, named PHIL (PHotoInjectors at LAL). This facility
has two main purposes: push the limits of the photoinjectors performances
working on both the design and the associated technology and provide a low
energy (MeV) short pulses (ps) electron beam for the interested users. Another
very important goal of this machine will be to provide an opportunity to form
accelerator physics students, working in a high technology environment. To
achieve this goal a test line was realised equipped with an RF source, magnets
and beam diagnostics. In this article we will desrcibe the PHIL beamline and
its characteristics together with the description of the first two
photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns
Pharmacokinetic and pharmacodynamic modelling after subcutaneous, intravenous and buccal administration of a high-concentration formulation of buprenorphine in conscious cats
The aim of this study was to describe the joint pharmacokinetic-pharmacodynamic model and evaluate thermal antinociception of a high-concentration formulation of buprenorphine (Simbadolâą) in cats
Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385
The star HD 49385 is the first G-type solar-like pulsator observed in the
seismology field of the space telescope CoRoT. The satellite collected 137 days
of high-precision photometric data on this star, confirming that it presents
solar-like oscillations. HD 49385 was also observed in spectroscopy with the
NARVAL spectrograph in January 2009. Our goal is to characterize HD 49385 using
both spectroscopic and seismic data. The fundamental stellar parameters of HD
49385 are derived with the semi-automatic software VWA, and the projected
rotational velocity is estimated by fitting synthetic profiles to isolated
lines in the observed spectrum. A maximum likelihood estimation is used to
determine the parameters of the observed p modes. We perform a global fit, in
which modes are fitted simultaneously over nine radial orders, with degrees
ranging from l=0 to l=3 (36 individual modes). Precise estimates of the
atmospheric parameters (Teff, [M/H], log g) and of the vsini of HD 49385 are
obtained. The seismic analysis of the star leads to a clear identification of
the modes for degrees l=0,1,2. Around the maximum of the signal (nu=1013
microHz), some peaks are found significant and compatible with the expected
characteristics of l=3 modes. Our fit yields robust estimates of the
frequencies, linewidths and amplitudes of the modes. We find amplitudes of
about 5.6 +/- 0.8 ppm for radial modes at the maximum of the signal. The
lifetimes of the modes range from one day (at high frequency) to a bit more
than two days (at low frequency). Significant peaks are found outside the
identified ridges and are fitted. They are attributed to mixed modes.Comment: 13 pages, 14 figures, accepted in A&
Solar-like oscillations with low amplitude in the CoRoT target HD 181906
Context: The F8 star HD 181906 (effective temperature ~6300K) was observed
for 156 days by the CoRoT satellite during the first long run in the centre
direction. Analysis of the data reveals a spectrum of solar-like acoustic
oscillations. However, the faintness of the target (m_v=7.65) means the
signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N
leads to complications in the analysis. Aims: To extract global variables of
the star as well as key parameters of the p modes observed in the power
spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a
wavelet transform and spot fitting have been used to obtain the average
rotation rate of the star and its inclination angle. Then, the autocorrelation
of the power spectrum and the power spectrum of the power spectrum were used to
properly determine the large separation. Finally, estimations of the mode
parameters have been done by maximizing the likelihood of a global fit, where
several modes were fit simultaneously. Results: We have been able to infer the
mean surface rotation rate of the star (~4 microHz) with indications of the
presence of surface differential rotation, the large separation of the p modes
(~87 microHz), and therefore also the ridges corresponding to overtones of the
acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure
- âŠ