353 research outputs found

    Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)

    Get PDF
    Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg(fum) T , plume gaseous elemental Hg(g) 0 and plume particulate Hg(p) II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on HgT/SO2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y−1, in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1–3), 115–121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg(p) II increases with distance from the fumarole vent, at the expense of Hg(g) 0 and indicates significant in-plume oxidation and condensation of fumarole Hg(fum) T . Relative to the NIST SRM3133 Hg standard, the stable isotopic compositions of Hg are ÎŽ202Hg(fum) T =−0.74‰±0.18 (2SD, n=4) for condensed gaseous fumarole Hg(fum) T , ÎŽ202Hg(g) 0 =−1.74‰±0.36 (2SD, n=1) for plume gaseous elemental Hg(g) 0 at the F0 fumarole, and ÎŽ202Hg(p) II =−0.11‰±0.18 (2SD, n=4) for plume particulate Hg(p) II . The enrichment of Hg(p) II in the heavy isotopes and Hg(g) 0 in the light isotopes relative to the total condensed fumarolic Hg(fum) T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion inambient T° atmosphere. A first order Rayleigh equilibriumcondensation isotope fractionation model yields a fractionation factor αcond-gas of 1.00135±0.00058

    Calculation of Spectral Darkening and Visibility Functions for Solar Oscillations

    Get PDF
    Calculations of spectral darkening and visibility functions for the brightness oscillations of the Sun resulting from global solar oscillations are presented. This has been done for a broad range of the visible and infrared continuum spectrum. The procedure for the calculations of these functions includes the numerical computation of depth-dependent derivatives of the opacity caused by p modes in the photosphere. A radiative-transport code was used for this purpose to get the disturbances of the opacities from temperature and density fluctuations. The visibility and darkening functions are obtained for adiabatic oscillations under the assumption that the temperature disturbances are proportional to the undisturbed temperature of the photosphere. The latter assumption is the only way to explore any opacity effects since the eigenfunctions of p-mode oscillations have not been obtained so far. This investigation reveals that opacity effects have to be taken into account because they dominate the violet and infrared part of the spectrum. Because of this dominance, the visibility functions are negative for those parts of the spectrum. Furthermore, the darkening functions show a wavelength-dependent change of sign for some wavelengths owing to these opacity effects. However, the visibility and darkening functions under the assumptions used contradict the observations of global p-mode oscillations, but it is beyond doubt that the opacity effects influence the brightness fluctuations of the Sun resulting from global oscillations

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte

    The non-detection of oscillations in Procyon by MOST: is it really a surprise?

    Full text link
    We argue that the non-detection of oscillations in Procyon by the MOST satellite reported by Matthews et al. (2004) is fully consistent with published ground-based velocity observations of this star. We also examine the claims that the MOST observations represent the best photometric precision so far reported in the literature by about an order of magnitude and are the most sensitive data set for asteroseismology available for any star other than the Sun. These statements are not correct, with the most notable exceptions being observations of oscillations in alpha Cen A that are far superior. We further disagree that the hump of excess power seen repeatedly from velocity observations of Procyon can be explained as an artefact caused by gaps in the data. The MOST observations failed to reveal oscillations clearly because their noise level is too high, possibly from scattered Earthlight in the instrument. We did find an excess of strong peaks in the MOST amplitude spectrum that is inconsistent with a simple noise source such as granulation, and may perhaps indicate oscillations at roughly the expected level.Comment: 6 pages, accepted for publication in A&A Letter

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns

    Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385

    Full text link
    The star HD 49385 is the first G-type solar-like pulsator observed in the seismology field of the space telescope CoRoT. The satellite collected 137 days of high-precision photometric data on this star, confirming that it presents solar-like oscillations. HD 49385 was also observed in spectroscopy with the NARVAL spectrograph in January 2009. Our goal is to characterize HD 49385 using both spectroscopic and seismic data. The fundamental stellar parameters of HD 49385 are derived with the semi-automatic software VWA, and the projected rotational velocity is estimated by fitting synthetic profiles to isolated lines in the observed spectrum. A maximum likelihood estimation is used to determine the parameters of the observed p modes. We perform a global fit, in which modes are fitted simultaneously over nine radial orders, with degrees ranging from l=0 to l=3 (36 individual modes). Precise estimates of the atmospheric parameters (Teff, [M/H], log g) and of the vsini of HD 49385 are obtained. The seismic analysis of the star leads to a clear identification of the modes for degrees l=0,1,2. Around the maximum of the signal (nu=1013 microHz), some peaks are found significant and compatible with the expected characteristics of l=3 modes. Our fit yields robust estimates of the frequencies, linewidths and amplitudes of the modes. We find amplitudes of about 5.6 +/- 0.8 ppm for radial modes at the maximum of the signal. The lifetimes of the modes range from one day (at high frequency) to a bit more than two days (at low frequency). Significant peaks are found outside the identified ridges and are fitted. They are attributed to mixed modes.Comment: 13 pages, 14 figures, accepted in A&

    Solar-like oscillations with low amplitude in the CoRoT target HD 181906

    Full text link
    Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure
    • 

    corecore