401 research outputs found

    Arrested versus active silica diagenesis reaction boundaries—A review of seismic diagnostic criteria

    Get PDF
    This paper evaluates previously proposed diagnostic criteria that can be used to determine whether or not there is active migration of the opal-A to opal-CT transition zone (TZA/CT). The criteria are based on the interpretation of 2D and 3D seismic surveys and are therefore geometrical. They involve an assessment of the relationship of the TZA/CT with polygonal fault systems, differential compaction structures and tectonic folds. The most robust evidence for an inactive ‘reaction front’ between opal-A and opal-CT bearing sediments is the discordance of the TZA/CT relative to present-day isotherms. Any of these may be persuasive as diagnostic criteria for the upward arrest of the diagenetic transformation at a regional scale, but actual truncation of the TZA/CT at the modern seabed is definitive for arrested diagenesis. This study argues that diagenetic assessment based solely on a single criterion independently is not reliable as an indicator for the current state of a silica transition. As a conclusion, the analysed seismic/structural criteria should be synthesised to provide a more credible interpretation for silica diagenesis. The use of modern 2D and 3D seismic data for the reconstruction of the diagenetic history of opaline silica bearing sediments offers a new approach to the study of silica diagenesis at a regional scale

    Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia

    Get PDF
    Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4-1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.Publisher PDFPeer reviewe

    Dietary nitrate intake is associated with decreased incidence of open-angle Glaucoma: The Rotterdam study

    Get PDF
    Previous studies suggest that nitric oxide is involved in the regulation of the intraocular pressure (IOP) and in the pathophysiology of open-angle glaucoma (OAG). However, prospective studies investigating the association between dietary nitrate intake, a source of nitric oxide, and incident (i)OAG risk are limited. We aimed to determine the association between dietary nitrate intake and iOAG, and to evaluate the association between dietary nitrate intake and IOP. From 1991 onwards, participants were followed each five years for iOAG in the Rotterdam Study. A total of 173 participants developed iOAG during follow-up. Cases and controls were matched on age (mean ± standard deviation: 65.7 ± 6.9) and sex (%female: 53.2) in a case:control ratio of 1:5. After adjustment for potential confounders, total dietary nitrate intake was associated with a lower iOAG risk (odds ratio (OR) with corresponding 95% confidence interval (95% CI): 0.95 (0.91–0.98) for each 10 mg/day higher intake). Both nitrate intake from vegetables (OR (95% CI): 0.95 (0.91–0.98) for each 10 mg/day higher intake) and nitrate intake from non-vegetable food sources (OR (95% CI): 0.63 (0.41–0.96) for each 10 mg/day higher intake) were associated with a lower iOAG risk. Dietary nitrate intake was not associated with IOP. In conclusion, dietary nitrate intake was associated with a reduced risk of iOAG. IOP-independent mechanisms may underlie the association with OAG

    Analysis of Energy Flow in US GLOBEC Ecosystems Using End-to-End Models

    Get PDF
    End-to-end models were constructed to examine and compare the trophic structure and energy flow in coastal shelf ecosystems of four US Global Ocean Ecosystem Dynamics (GLOBEC) study regions: the Northern California Current, the Central Gulf of Alaska, Georges Bank, and the Southwestern Antarctic Peninsula. High-quality data collected on system components and processes over the life of the program were used as input to the models. Although the US GLOBEC program was species-centric, focused on the study of a selected set of target species of ecological or economic importance, we took a broader community-level approach to describe end-to-end energy flow, from nutrient input to fishery production. We built four end-to-end models that were structured similarly in terms of functional group composition and time scale. The models were used to identify the mid-trophic level groups that place the greatest demand on lower trophic level production while providing the greatest support to higher trophic level production. In general, euphausiids and planktivorous forage fishes were the critical energy-transfer nodes; however, some differences between ecosystems are apparent. For example, squid provide an important alternative energy pathway to forage fish, moderating the effects of changes to forage fish abundance in scenario analyses in the Central Gulf of Alaska. In the Northern California Current, large scyphozoan jellyfish are important consumers of plankton production, but can divert energy from the rest of the food web when abundant

    Role of AMP-Activated Protein Kinase on Steroid Hormone Biosynthesis in Adrenal NCI-H295R Cells

    Get PDF
    Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity

    Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote

    Get PDF
    Biomineralization marks one of the most significant evolutionary milestones among the Eukarya, but its roots in the fossil record remain obscure. We report crystallographic and geochemical evidence for controlled eukaryotic biomineralization in Neoproterozoic scale microfossils from the Fifteenmile Group of Yukon, Canada. High-resolution transmission electron microscopy reveals that the microfossils are constructed of a hierarchically organized interwoven network of fibrous hydroxyapatite crystals each elongated along the [001] direction, indicating biological control over microstructural crystallization. New Re-Os geochronological data from organic-rich shale directly below the fossil-bearing limestone constrain their age to <810.7 ± 6.3 million years ago. Mineralogical and geochemical variations from these sedimentary rocks indicate that dynamic global marine redox conditions, enhanced by local restriction, may have led to an increase in dissolved phosphate in pore and bottom waters of the Fifteenmile basin and facilitated the necessary geochemical conditions for the advent of calcium phosphate biomineralization

    The inflammatory potential of diet is associated with the risk of age-related eye diseases

    Get PDF
    Background &amp; aims: Inflammation is involved in the pathogenesis of cataract, age-related macular degeneration (AMD), and possibly open-angle glaucoma (OAG). We assessed whether the inflammatory potential of diet (quantified using the dietary inflammatory index; DII) affects the incidence of these common blinding age-related eye diseases. Serum inflammation markers were investigated as possible mediators.Methods: Participants aged &gt;45 years were selected from the prospective, population-based Rotterdam Study. From 1991 onwards, every 4–5 years, participants underwent extensive eye examinations. At baseline, blood samples and dietary data (using food frequency questionnaires) were collected. The DII was adapted based on the data available. Of the 7436 participants free of eye diseases at baseline, 4036 developed incident eye diseases during follow-up (cataract = 2895, early-intermediate AMD = 891, late AMD = 81, OAG = 169). Results: The adapted DII (aDII) ranged from −4.26 (i.e., anti-inflammatory) to 4.53 (i.e., pro-inflammatory). A higher aDII was significantly associated with increased inflammation. A higher neutrophil-lymphocyte ratio (NLR) was associated with an increased risk of cataract and AMD. Additionally, complement component 3c (C3c) and systemic immune-inflammation index (SII) were associated with increased risks of cataract and late AMD, respectively. Every point increase in the aDII was associated with a 9% increased risk of cataract (Odds ratio [95% confidence interval]: 1.09 [1.04–1.14]). The NLR and C3c partly mediated this association. We also identified associations of the aDII with risk of AMD (early-intermediate AMD, OR [95% CI]: 1.11 [1.03–1.19]; late AMD, OR [95% CI]: 1.24 [1.02–1.53]). The NLR partly mediated these associations. The aDII was not associated with OAG. Conclusions: A pro-inflammatory diet was associated with increased risks of cataract and AMD. Particularly the NLR, a marker of subclinical inflammation, appears to be implicated. These findings are relevant for patients with AMD and substantiate the current recommendations to strive for a healthy lifestyle to prevent blindness.</p

    In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars

    Get PDF
    Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low fluid to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of FeO and MgO, consistent with alteration of olivine-bearing basalt and subsequent precipitation of FeO and MgO bearing secondary minerals as the primary control on soil geochemistry

    Renal angiomyolipoma in patients with tuberous sclerosis complex: findings from the TuberOus SClerosis registry to increase disease Awareness

    Get PDF
    BACKGROUND: Renal angiomyolipoma occurs at a high frequency in patients with tuberous sclerosis complex (TSC) and is associated with potentially life-threatening complications. Despite this frequency and severity, there are no large population-based cohort studies. Here we present baseline and follow-up data of the international TuberOus SClerosis registry to increase disease Awareness (TOSCA) with an aim to provide detailed clinical characteristics of renal angiomyolipoma among patients with TSC. METHODS: Patients of any age with a documented clinic visit for TSC within 12 months or who were newly diagnosed with TSC before participation in the registry were eligible. Data specific to renal angiomyolipoma included physical tumour characteristics (multiple, bilateral, lesion size and growing lesions), clinical signs and symptoms, and management. The effects of age, gender and genotype on the prevalence of renal angiomyolipoma were also evaluated. RESULTS: Renal angiomyolipoma was reported in 51.8% of patients at baseline, with higher frequency in female patients (57.8% versus 42.2%). The median age at diagnosis was 12 years. Prevalence of angiomyolipoma was higher in patients with TSC2 compared with TSC1 mutations (59.2% versus 33.3%, P 3 cm in 34.3% of patients. Most patients were asymptomatic (82%). Frequently reported angiomyolipoma-related symptoms included bleeding, pain, elevated blood pressure and impaired renal function. Embolization and mammalian target of rapamycin inhibitors were the two most common treatment modalities. CONCLUSIONS: The TOSCA registry highlights the burden of renal angiomyolipoma in patients with TSC and shows that renal manifestations are initially asymptomatic and are influenced by gender and genotype. Furthermore, the occurrence of significant problems from angiomyolipoma in a minority of younger patients suggests that surveillance should begin in infancy or at initial diagnosis
    • …
    corecore