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Abstract

This paper evaluates previously proposed diagnostic criteria that can be used to determine

whether or not there is active migration of the opal-A to opal-CT transition zone (TZA/CT). The

criteria are based on the interpretation of 2D and 3D seismic surveys, and are therefore

geometrical. They involve an assessment of the relationship of the TZA/CT with polygonal fault

systems, differential compaction structures, and tectonic folds. The most robust evidence for

an inactive ‘reaction front’ between opal-A and opal-CT bearing sediments is the discordance

of the TZA/CT relative to present-day isotherms. Any of these may be persuasive as diagnostic

criteria for the upward arrest of the diagenetic transformation at a regional scale, but actual

truncation of the TZA/CT at the modern seabed is definitive for arrested diagenesis. This study

argues that diagenetic assessment based solely on a single criterion independently is not

reliable as an indicator for the current state of a silica transition. As a conclusion, the

analysed seismic/structural criteria should be synthesised to provide a more credible

interpretation for silica diagenesis. The use of modern 2D and 3D seismic data for the

reconstruction of the diagenetic history of opaline silica bearing sediments offers a new

approach to the study of silica diagenesis at a regional scale.

Keywords: Silica diagenesis; bottom simulating reflector; seismic stratigraphy; differential

compaction folding; polygonal fault systems

1. Introduction

The transformation of silica from opal-A (biogenic opal) to opal-CT (cristobalite/tridymite) is

the most conspicuous diagenetic event present in modern and ancient deep-sea sediments

where diatomaceous oozes are major constituents of ocean basin floors. This transformation

comprises a complex set of dissolution–reprecipitation reactions (Stein and Kirkpatrick, 1976;
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Kastner et al., 1977; Leeder, 1982; Williams and Crerar, 1985; Williams et al., 1985; Wrona

et al., 2017a), which lead to marked changes in the host sediment petrophysics, particularly a

porosity drop (Isaacs, 1981; Tada, 1991; Nobes et al., 1992; Chaika and Dvorkin, 1997,

2000; Meadows and Davies, 2007, 2009; Weller and Behl, 2015). These petrophysical

variations are essentially due to extensive dissolution of opal-A and lesser impacts from

precipitation of pore-filling opal-CT (Wrona et al., 2017a; Wrona et al., 2017b; Wrona et al.,

2017c; Varkouhi et al., 2020a; Varkouhi et al., 2020b). A marked reduction in the content of

biosilica frustules following dissolution significantly reduces the sediment stability, which

makes its framework susceptible to abrupt collapse, sharp reduction in intergranular and

intragranular porosities, and an appreciable interstitial-water expulsion (Varkouhi et al.,

2020a; Varkouhi et al., 2020b). A lesser role for subsequent formation of diagenetic opal on

physical-property response than pioneer dissolution of biogenic opal is commonly due to the

restraining influences of authigenic phases other than opal-CT (e.g. authigenic clays) that

precipitate mostly concomitant with silica diagenesis and restrict substantial formation of

opal-CT through affecting the solubility and chemical kinetics of pore-water silica (Emerson

and Hedges, 2008; Loucaides et al., 2010; Varkouhi and Wells, 2020; Varkouhi et al., 2020b;

Varkouhi et al., 2021). The prominent increase in sediment bulk density over a vertical extent

of a few metres results from porosity reduction, and compressional velocity increases owe to

cementation of pore space by opal-CT (Varkouhi et al., 2020a). As a result, acoustic

impedance dramatically increases, allowing these petrophysical changes to be imaged on

seismic profiles as a high-amplitude discrete reflection or composite reflection that is most

easily identified when it exhibits a discordant geometry with the host stratigraphy (Brekke,

2000; Davies and Cartwright 2002; Davies, 2005; Davies et al., 2009; Ireland et al., 2010;

Neagu et al., 2010a; Neagu et al., 2010b).

This high amplitude reflection is found to crudely mark the position of a transition zone, where

opal-A is gradually lost, and replaced by opal-CT (hereafter TZA/CT) . The mapping and

interpretation of the TZA/CT is important for a general understanding of petroleum systems

(Perrodon et al., 1998; Davies and Cartwright, 2002; Dralus et al., 2015), as a major drilling

hazard (presence of hard sub-seabottom porcellaneous and chert layers containing opal-CT;

Neagu, 2011; Roberts, 2014), and more fundamentally to place the significance of silica

diagenesis in a basin evolutionary context (Davies, 2005; Wrona et al., 2017a).

Research into biogenic silica diagenesis in deep-water deposits is a broad theme that has

been based on seismic reflection profiling (for a review of the literature, see Cartwright,
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2007), scientific drillings (see Neagu, 2011 for a literature review), and outcrop examinations

(see Chaika, 1998). The TZA/CT was first recognised on 2D seismic reflection profiles acquired

during research cruises linked to the earliest drilling campaigns of the Deep Sea Drilling

Project (DSDP) (Hein et al., 1978; Lonsdale, 1990). These early investigations were focused

on Late Cenozoic deep-sea sediments deposited on lower continental slopes of the southern

Bering Sea, where the seismic reflection from the TZA/CT was parallel to the modern seafloor.

As a result, the diagenetic reflection was commonly described as a bottom simulating

reflector (BSR)―a distinct reflection that roughly parallels the seabed based on seismic

reflection images that exhibit high-amplitude reverse-polarity waveforms (Dillon et al., 1993;

Sheriff and Geldart, 1995; Hillman et al., 2017; Ohde et al., 2018). Silica diagenesis was

further researched over the past three decades, largely catalysed by the drilling campaigns of

Ocean Drilling Program (ODP), which involved both 2D and 3D mapping of the TZA/CT and its

sediment sampling (after Neagu, 2011; Varkouhi, 2018. Also see Ocean Drilling Program

Publication Services, 2012). The TZA/CT has been also described from biosiliceous

sedimentary rocks on land. The most extensive and well-researched outcrops being from the

Miocene Monterey Formation in California, where the diagenesis of soft diatomaceous oozes

has resulted in the development of significant hydrocarbon reservoirs in diagenetically formed

tight chert and diatomite (Pisciotto, 1981; Isaacs, 1981, 1982; Keller and Isaacs, 1985; Behl

and Garrison, 1994; Chaika, 1998; Chaika and Williams, 2001).

One of the most unresolved questions in silica diagenetic research is the recognition and

study of arrested transition zones as opposed to currently active TZA/CT. Deciphering the

diagenetic state of TZA/CT, i.e. arrested or active transition zone, is critical for a better

understanding of biogenic silica diagenesis (Neagu et al., 2010b) and for reconstructing the

thermal history of sediments hosting this diagenetic reaction (Pisciotto, 1981; Pisciotto et al.,

1992; Wrona et al. 2017a; Varkouhi, 2018; Varkouhi et al., 2021). By 'arrested' (also referred

to as fossilised by Davies and Cartwright, 2002; Neagu et al., 2010b), this study means the

transition across which transformation from opal-A to opal-CT is presently static; implying that

the regional transition zone is not currently at or near the phase stability boundary between

opal-A and opal-CT. The arrested status of diagenesis is determined from certain specific

stratigraphic and structural relationships between the reaction front and the host sediments

(Davies and Cartwright, 2002). These relationships imply that the silica front is unlikely to be

active in its current sub-seafloor position. Importantly, the lack of equilibrium with the present-

day temperature field in the basin is considered the main clue that accounts for the arrested

state of the TZA/CT and therefore its discordant attitude relative to the present-day seabed, i.e.
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a non bottom simulating reflector (non-BSR) (Brekke, 2000; Fig. 1A). The disequilibrium

leading to arrested transitions has been attributed to a marked reduction in the thermal

regime of the host basin in the recent past (Brekke, 2000; Neagu et al., 2010b). Conversely,

silica diagenesis is still ongoing across active transitions. The long established view of an

active TZA/CT, being geometrically close to seabottom simulating was developed based on the

discordant basin-wide stratigraphic relationships between the TZA/CT and its host strata (Hein

et al., 1978; Lonsdale, 1990; Fig. 1B).

In the past four decades, several studies have proposed interpretational criteria which allow a

distinction to be made between arrested and active transition zones on a case by case basis

(Table 1). These criteria are based on seismic structural examination of the TZA/CT and mostly

support the notion of presently arrested transitions. However, it should be noted that the

seismic reflection that is interpreted as the diagenetic front is not able to reveal the subtle

variations in composition that really define the TZA/CT (Varkouhi, 2018; Varkouhi et al., 2020b).

Geochemical data, including pore-water saturation state with respect to silica polymorphs can

provide added constraints to the seismic interpretations (Varkouhi et al., 2020b). However,

such supplemental evidence for the dissolution kinetics of amorphous opal and precipitation

of diagenetic silica is at the pore-water sample scale, and cannot be easily translated to

modelling of migration of the opal-A to opal-CT reaction front at a regional scale. The

precision of a seismic stratigraphic approach is further challenged by Meadows and Davies

(2007) who discussed the morphologies of the silica front cross-sectional morphologies in the

Sea of Okhotsk. According to their study, though a discordant feature relative to the modern

seabed, the reaction over the TZA/CT would not cease completely (the arrested condition), and

they argue instead that there has been a dramatic decrease in the opal-A to opal-CT

transformation rate in the final stage of basin evolution.

Given the significance of determining the diagenetic state of the TZA/CT, the principal aim of

this paper is to review the seismic criteria developed by earlier research (compiled in Table 1)

to differentiate arrested versus active silica diagenesis transition zones. The intention here is

not to exhaustively discuss these interpretational criteria, but to critically examine their

reliability and to provide insights, drawn based on the use of these criteria by former works,

into the potential of seismic stratigraphy method for silica diagenetic research.

2. Diagenetic criteria – Review and assessment

2.1. Geometrical relationship to present-day isotherms
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Roaldset and He (1995) were the first who proposed that disequilibrium with present-day

temperature structure supports the view of a presently arrested TZA / C T within Neogene

deposits in the Barents Sea. Brekke (2000) and Neagu et al. (2010b) further argued for this

criterion for the TZA/CT  in the Atlantic mid-Norwegian margin sediments by linking the cause of

regionally discordant attitude of this transition zone relative to the present-day isotherms,

including those at the seafloor to the arrested diagenesis (Fig. 2). Meadows and Davies

(2007), in contrast, discuss the TZA/CT hosted within the Miocene deposits from the Sea of

Okhotsk as an example of a discordant-to-modern seabed feature that is likely to represent

active silica diagenesis, notwithstanding its parallel relationship to the overlying Late Miocene

Unconformity (Fig. 3). They suggest that the TZA/CT was ascending through the sediments

parallel to the isotherms at this time (Late Miocene), and that its sluggish behaviour after the

Late Miocene is likely due to erosion of overburden or an increase in sedimentation rates

relative to the rate of silica diagenetic reactions. Although the present stratigraphic

architecture is not able to distinguish between these mutually exclusive possibilities, an

episode of Late Pliocene basin inversion which led to the deformation of pre-existing

structures suggests a more role for the overburden erosion on significant reduction in the rate

of opal-A to opal-CT transformation across the TZA/CT from the Sea of Okhotsk than the

influence of sediment accumulation (after Tull, 1997).

2.1.1. Bottom simulating reflectors

Based on seismic, thermodynamic, and petrographic analysis of the BSR TZA/CT

accommodated within the Middle Miocene sediments of the Ocean Drilling Program (ODP)

Sites 794 and 795 in the Sea of Japan, Varkouhi et al. (2020b) compiled a set of

observations that indicate the opal-A to opal-CT transition zones with a BSR geometry

possibly represent an actively migrating diagenetic front:

- They are found in continuous stratigraphic sections with no major breaks or unconformities

in deposition;

- The front is clearly identifiable on seismic profiles;

- Though parallel to the present-day seabed, the TZA/CT lies discordant to host sediments

(Hein et al., 1978; Figs. 4 A through C);

- The front is hosted in silica-rich young sediments (Late Miocene and younger). The age of

depositional horizons hosting the TZA / C T was constrained by diatom biostratigraphy

(Shipboard Scientific Party, 1990a, 1990b; Koizumi, 1992);

- The geothermal gradient of the sediment accommodating the TZA/CT is very high (e.g. 132

°C/km for Site 795; Shipboard Scientific Party, 1990b)
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In contrast, only a few BSR opal-A to opal-CT transitions that are parallel to the present-day

seabed and are in an arrested diagenetic state have been convincingly documented. An

excellent example is located in the western Pacific and was calibrated by ODP Legs 129 and

181 (Figs. 5A, B). The seismic record in the vicinity of Site 800 from Leg 129 displays a

shallow deformed TZA/CT reflection at a more or less constant depth of ~ 50 mbsf (equates to

0.06s two-way traveltime) that generally mimics the seabed reflector (Fig. 5A). This TZA/CT lies

discordant with the stratified ancient host sediments of Campanian age, but simulating the far

younger (Middle Miocene to Quaternary) overlying pelagic clay beds (containing 20% opal-A

in average; International Ocean Discovery Program, 2014). A large hiatus ranged from the

Late Cretaceous (Early Maastrichtian) to late Early Miocene and regionally recorded over the

central western Pacific has been well documented within and in proximity of this ODP

borehole site (Shipboard Scientific Party, 1990c).   

There are two hypotheses that account for the likely arrest of silica diagenesis across this

TZA/CT: 1) a sudden change in thermal regime of the host basin, 2) major breaks in sediment

accumulation

Since silica diagenesis is dominantly temperature controlled (Kastner et al., 1977; Kastner

and Gieskes, 1983; Littke et al., 1991; Kuramoto et al., 1992; Eichhubl and Behl, 1998;

Davies and Cartwright, 2002; Neagu et al., 2010b ), this ancient BSR TZA/CT may represent

the record of a major sudden decrease in the heat flow during the arrest period, likely before

t h e Middle Miocene, therefore accounting for its disequilibrium with the present-day

geothermal gradient. If this is the case, the thin overburden that has deposited above the

TZA / C T since the Middle Miocene means that a Late Cretaceous to late Early Miocene

hypothetical palaeo-geothermal gradient at a minimum of 70 °C/km, markedly greater than

that of the present-day (the modern geothermal gradient and temperature being 50 °C/km

and ~ 2.5 °C, respectively; after Shipboard Scientific Party, 1990c; Fig. 6), would have been

needed to raise the palaeo-temperature of TZA/CT above its modern temperature. In addition,

the diagenesis was likely arrested when the TZA/CT was migrating up-section through the

biosiliceous overburden under a markedly higher geothermal gradient, given the discordant

geometry of this transition relative to the adjacent stratigraphy. However, there are currently

no constraints of the past temperature relationships to verify this hypothesis.

The Late Cretaceous to Middle Miocene phase of non-deposition coincident with the surface

of the TZA/CT can also lend support to the inference that the silica diagenesis across the
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transition zone drilled by the ODP Leg 129 is an arrested reaction front. An event of rapid

reduction of overburden by deep regional marine erosion over the central western part of the

Pacific Ocean (as documented by Shipboard Scientific Party, 1990c) was followed by the

very low accumulation rate of post-hiatus sediments typical of pelagic deep-sea clays. This

erosional event probably led to a marked decrease in the geothermal gradient such that the

overburden deposited since Middle Miocene time has still not returned the arrested TZA/CT

level back to the temperature required to rejuvenate its active status. The fact that the TZA/CT

and its accommodating bedding reflectors are heavily involved in the latest phase of

deformation, including faulting, while the post-hiatus Cenozoic deposits above it have not

been deformed further supports this hypothesis by implying that the ancient formerly deep

transition was deformed before the deposition of after-hiatus strata; thus out of thermal

equilibrium, to such a degree that it cannot be still advancing up the column. In addition,

development of cellular morphologies along middle parts of the transition zone (Fig. 5A) and

that these features die out up-section and do not offset the opal-A-bearing beds indicate that

silica diagenesis has been likely arrested before the Middle Miocene age of the initiation of

post-hiatus deposits. The formation of these cellular structures across the TZA/CT is attributed

to the pre-arrest upward advance of this boundary due to the release of overpressure (Davies

and Cartwright, 2007; Neagu et al., 2010b).

While the typical BSR TZA/CT with likely arrested status are commonly observed to be 100–

200 m or less of the present-day seabed, rare cases of deeper transitions (> 400 mbsf) can

also be tracked through the western Pacific deep-sea sediments. The best example of this

type of TZA/CT was penetrated during ODP Leg 181, proximal to Site 1124 in North Island,

New Zealand (Fig. 5B). This folded diagenetic horizon cross-cuts the Late Cretaceous host

stratigraphy, but is parallel to the near-seabed younger strata. Over the eastern flank of the

Hikurangi Trough, west of Site 1124, the TZA/CT is typically parallel to the basal hemipelagic

biosiliceous layers which have deposited immediately following the erosional event

responsible for an Early Miocene (19–23.8 Ma) unconformity (after Shipboard Scientific

Party, 1999). Although association solely with the regional folding, does not strongly support

arrested diagenesis across the boundary, the initiation of diagenesis since Late Cretaceous

suggests that this deeply buried ancient TZA/CT cannot be related to an active diagenetic

reaction in its current sub-seafloor position ~ 470 mbsf (Fig. 5B). It seems that the upward

migration of the boundary was arrested in a folded geometry before the cessation of regional

folding and onset of the Early Miocene erosional events. Analogous structural deformation

pattern of the TZA/CT and its overlying reflectors, including the current folded seabed suggests
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that the arrest of diagenesis pre-dated the final phase of folding; otherwise the deformed

geometry of the front would have been comparatively smoothed since the Late Cretaceous

onset of silica diagenesis following upward advance of the TZA/CT through the overlying opal-A

sediment, and this is obviously not the case for this reaction front.

— Argument

Since temperature is a dominant control on silica diagenesis (e.g. Neagu et al., 2010b), the

active up-section migration should simulate the seafloor isotherm and isothermal reflections

within shallow parts of a basin with a simple structure and homogenous sedimentation rates,

i.e. a BSR TZA/CT (Gretener, 1981; criterion 1 in Table 2). However, such a seabottom

mimicking TZA/CT geometry is very unlikely to occur in the Atlantic margin, where the thermal

structure of the shallow zones of this basin has been complicated by numerous local

variations in thermal regimes due to highly structured nature of the basin (by following

Neagu, 2011). From this, a strong case can be made that variations in thermal structure of

the basin lead to thermal disequilibrium of the TZA/CT stratigraphic horizon with normal

isotherms that represent modern geothermal gradients (Fig. 7). The case does not imply that

present local isotherms always mirror the seabed over any structure, but a discordant-to-

modern seabed reaction front is a non-isothermal marker which follows neither the seafloor

nor the present isotherms (criterion 3 in Table 2). Shallow isotherms are however mainly

parallel to the seabed because of the effect of cold sea water, but it depends critically on

basal heat flow and thermal conductivity of the sediments (Rafferty, 2011). The disequilibrium

with present-day temperature structure occurs when the front upward advancement is

arrested possibly owing sudden changes in the basin thermal state (e.g. Brekke, 2000). The

aforementioned case also suggests that the hypothesis of Meadows and Davies (2007)–a

non-BSR reaction front may still represent an active feature, but with a sluggish upward

advancement–is not correct. If correct, the geometry of the TZA/CT at a regional scale would

have been strongly influenced by stratigraphic array of overburden, and this is clearly not the

case in the Atlantic margin and the Sea of Okhotsk. In addition, if still in thermal equilibrium

with the present isotherms, i.e. an active TZA/CT, a reflector topologically mirroring the seabed

isotherm at a regional scale would have been expected (Neagu et al., 2010b). While the

discordant-to-modern seafloor TZA / C T represents a partly faulted more or less smooth

boundary over most part of the eastern Russia in the Sea of Okhotsk, the overburden is

heavily involved in collapse features that result from sediment entrain following water flows

and therefore volume loss at the level of remobilized strata (Davies et al., 2008; Fig. 3).

Accordingly, the parallelism the boundary in the Sea of Okhotsk shows with the overlying
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strata only up to level of the Late Miocene Unconformity suggests that the TZA/CT has not

advanced since the Late Miocene. Following this argument, a discordant-to-modern seabed

geometry can highly support the regionally arrested nature of a TZA/CT at different settings.

In comparison, the reliable diagnostic criteria developed by Varkouhi et al. (2020b) in support

of the view of a likely active state for the BSR TZA/CT in the deep-sea sediments of the Japan

Sea can be applied to analogous basins from other geographical settings. However, given

the association of some BSR TZA/CT, e.g. those from the western Pacific margin with

deformational features, additionally the old age of these reaction boundaries (Late

Cretaceous), a BSR attitude relative to the present seafloor is not a definitive proof that silica

diagenesis reaction across the opal-A to opal-CT transition zone is currently active.

2.2. Truncation to present seafloor 

The truncation of a sub-seabottom TZA/CT reflector to the present-day seabed represents

regions of eroded overburden and seafloor. The overburden erosion occurs mostly due to

uplift and seawater flow energy, and its intensity in the seaward vergent region is commonly

greater than that of the landward vergent region (McAdoo et al., 2004). Without doubt, when

uplift and/or erosion results in the cropping out of a TZA/CT reflector at the present-day seabed,

the only possible interpretation is that the progress of any diagenetic reactions will most likely

be curtailed, and the front arrested. A good example of such a case of an outcropping

diagenetic front is shown in Figure 8 from the Nankai Trough, offshore southwestern Japan.

The exposure of the TZA/CT at the seafloor at a high angle on the steep ridge slopes suggests

a high degree of erosion, and the cessation of silica diagenesis. The exhaustion of biogenic

opal stock above the transition zone due to overburden removal over the eroded ridges is the

substantial cause for the arrest of the exposed TZA/CT in the Nankai Trough because this

process precludes silica diagenesis, and thus leads to its arrest. Varkouhi (2018) suggested

that the truncation of the reaction boundary at the seafloor provides clear and independent

indications of the arrest of silica diagenesis at a regional scale. Other deformation styles

associated with this TZA/CT, including seaward dipping faults and folds further strengthen the

view of its currently arrested state. The cross-cutting relationship between this faulted/folded

TZA/CT and its Middle to Late Pliocene host strata suggests that biogenic silica diagenesis

should have commenced and continued to proceed whilst deformation occurred during the

Pliocene. However, the timing of the arrest of diagenesis cannot be determined in this case,

given the removal by uplift and extensive erosion of the biogenic overburden.
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2.3. Regional anticlinal–synclinal morphology

The large inversion-related folds in the Faeroe-Shetland Channel, NE Atlantic margin, exhibit

a clear relationship between the structural relief at the depth of the TZA/CT from this basin and

the nearby stratal surfaces within the accommodating sediments (after Davies and

Cartwright, 2002; Fig. 7C). At a regional scale, th e TZA/CT is hosted in the Early to Late

Miocene sediments and is itself folded with a wavelength ranging between 5 and 20 km. The

fold axes mapped at the TZA/CT coincide with those mapped in the over- and underlying Upper

Oligocene to Late Miocene  sediments, which are known to be opaline in their original

depositional facies. The structural relief at the TZA/CT is far less pronounced than that of its

folded host strata as expected from a discordant diagenetic reflection. It is, however,

concordant with the Early Pliocene Unconformity that truncates the folded strata (Fig. 7C).

Using these key observations, Davies and Cartwright (2002) concluded that the TZA/CT from

the Faeroe-Shetland Basin likely advanced upwards during the folding, but was arrested

before the cessation of folding and the last stage of erosion across the Early Pliocene

Unconformity. A similar deformational relationship was observed in the adjacent Atlantic mid-

Norwegian margin by Brekke (2000), who indicated that on the flanks of the large arches and

domes in this area, the TZA/CT reflector clearly crosscuts the domal structures, but is also

observed to be itself involved in the latest phase of the arching (Fig. 9). Brekke (2000) argued

that the phase transition was regionally arrested most likely in latest Miocene or Early

Pliocene time. Comparable to the approach of Davies and Cartwright (2002), Neagu et al.

(2010b) used the reconstruction of major fold growth history for silica diagenesis in the mid-

Norwegian margin sediments to argue that the TZA/CT with partial development of serrated

patterns (Fig. 10A) advanced syn-folding and hosted within the Neogene deposits was

arrested in situ in a folded geometry since the Late Miocene.

— Argument

The interpretation of Davies and Cartwright (2002) on the state of silica diagenesis in the

Faeroe-Shetland basin can be argued as the TZA/CT could have continued to migrate upwards

after the last phase of folding, given a significant reserve of biogenic opal above this

boundary for fuelling. If this is the case, the structure of the TZA/CT would have been then more

highly impacted by overburden architecture than by tectonic folding, and this is clearly not the

geometry that the TZA/CT in the Faeroe-Shetland basin currently displays. The parallelism the

folded TZA/CT displays relative to the Early Pliocene Unconformity surface implies that the

reaction front was in thermal equilibrium with this unconformity surface before the arrest of

diagenesis because the unconformity was acting as the palaeo-seabed isotherm at that time.
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Possibly, following an event of uplift and rapid reduction of overburden by erosion during

Early Pliocene, this palaeo-seabed became an active erosional surface which led to the

cessation of silica diagenesis across the TZA/CT. Another piece of evidence for the arrest of

silica diagenesis before the structural deformation was discontinued comes from the

formation of asymmetrical toothy (serrated) features, ranging in height from 20 to 55 m,

across this boundary (Fig. 10B). These sawtooth patterns form where the TZA/CT commonly

cross-cuts deformed strata with an inclination similar to the angle of the boundary cross-

cutting them. The serrated morphology is indicative of the TZA / C T preferential upward

migration through opal-A rich higher stratal levels at a stair–step separation of a few tens of

metres, possibly due to variations in opal-A content of overlying sediment (Meadows and

Davies, 2007). These variations are most likely linked to variations across opal-A sediment

bedding. Therefore, the TZA/CT developed the serrated structure by advancing up through

inclined opal-rich layers of the overlying interbedded succession faster than through those

with lower opal-A content.

Thermodynamically, the regional folded structure of the transition zone from the research

conducted by Davies and Cartwright (2002), Brekke (2000), and Neagu et al. (2010b)

suggests different temperature histories experienced by its different deformed parts. This is

because the reaction boundary underwent deformation (folding) concomitant with its upward

advance, prior to reaching a chemical equilibrium relative to the silica diagenetic process. As

a result, the internal ordering of diagenetic silica lattice is comparatively less at the anticline

crest than at the syncline trough because the depression parts of the folded TZA/CT clearly

experience higher temperatures (Mizutani 1977; Neagu et al. 2010b). The maturation lines of

cristobalite therefore do not track the present-day isothermal reflections, an indication for the

cessation of ongoing diagenesis across the TZA/CT (Varkouhi et al., 2020b).

2.4. Differential compaction folding

The upward migration of silica reaction boundary during the transformation of opal-A to opal-

CT can result in the differential compaction and subsidence in the clastic deposits hosting

silica diagenesis (Davies, 2005). The type example of this diagenetically induced folding

mechanism was described from the Faeroe-Shetland Basin on the NE Atlantic margin using

3D seismic data (Davies, 2005). The folding and differential compaction was attributed to

differential advance of the TZA/CT. This boundary developed an irregular morphology

comprised of a series of ridge–depression structures across the TZA/CT (Figs. 7 and 11), with a

pattern of low-relief ridges or monoclines developed as areas of localized elevations spaced
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~ 0.5 to ~ 1 km apart and separated by gentle depressions (Davies et al., 1999; Davies,

2005; Davies and Cartwright, 2007). The ridge–depression format has primarily developed

because the host sediment mantles the polygonal fault system and the TZA/CT tracks the

faulted deformed stratigraphy (Davies, 2005). The accentuation of front relief through the

ridge lateral/upward growth—this is possibly due to an increased local heating by the flux of

hot fluids from the faults dissecting the TZA/CT—leads to the compaction and synchronous

differential subsidence of overburden due to porosity collapse, and thereby the development

of unusual domal folds, ranging in amplitude from ~ 50 m to subtle features of < 10 m, with

troughs mostly aligned with the underlying frontal ridges (Fig. 11). Accordingly, the ridge–

depression structure of the TZA/CT has developed during onset of diagenesis, before the

overburden subsiding to the depth of this boundary. Hence, the continued development of

these folds implies continued upwards migration of the irregularly advancing reaction front

through the overlying opal-A sediment pile. Neagu et al. (2010b) used this criterion to argue

for cessation of active upward migration of the TZA/CT from the mid-Norwegian margin.

— Argument

The structural relief of domal folds systematically decreases upwards, keeping in pace with

decrease in rate of active differential advance of the TZA/CT (Fig. 11; criterion 5 in Table 2).

From this interpretation, Neagu et al. (2010b) made a case that by the end of differential

compaction folding process, all active up-section migration of the TZA / C T from the mid-

Norwegian margin ceased at a regional scale, i.e. a presently arrested transition. However,

the same morphology could occur if one assumes silica diagenesis commenced since Early

Miocene is probably still ongoing across the TZA/CT, albeit for the time being at a rate that is

slow enough (lower than the burial rates of the order of meters per million years; Varkouhi et

al., 2021) to develop the fold relief and width comparable to those progressively formed due

to earlier opal-A to opal-CT transformation. Accordingly, the systematic upward decrease in

the fold relief is consistent with a significant reduction in differential porosity collapse (Fig. 11)

which is essentially impacted by the rate of silica diagenetic reaction (e.g. Mizutani, 1970,

1971, 1977; Varkouhi et al., 2020a; Varkouhi et al., 2020b). As a conclusion, association with

this mode of deformation cannot independently provide strong supporting evidence that the

silica transition zones accommodated within the Neogene deposits of the Faeroe-Shetland

basin and mid-Norwegian margin are currently arrested reaction fronts.

2.5. Polygonal faults

Polygonal fault systems are widely developed in biosiliceous mudstones that accumulate on
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many continental margins, abyssal plains, and some foreland basins and are linked to

sediment compaction and fluid expulsion (Cartwright, 1994, 2011; Cartwright and Dewhurst,

1998; Berndt et al., 2003; Stuevold et al., 2003; Gay and Berndt, 2007; He et al., 2010; Ding

et al., 2013). The individual faults making up the polygonal fault system have small throws

(commonly <50 m; Figs. 7A–C), and propagate with a diverse range of strikes such that the

array appears polygonal in planform (Cartwright et al., 2003; Cartwright, 2007). This

polygonality of the array is the defining feature of the system as a whole, and is one of the

main pieces of supportive evidence leading to the conclusion that polygonal faults are not

formed as a result of regional tectonic stresses (Cartwright, 2007). Using data from 3D

mapping of the NE Atlantic margin basins offshore UK and Norway, Cartwright and Dewhurst

(1998) showed that the TZA/CT i s hosted within polygonally faulted Early to Late Miocene

biosiliceous muds over most of the margin from the Rockall Basin in the southwest to the

Vøring Basin in the northeast. Further research on geometry and characteristics of the

polygonally faulted and deformed TZA / C T along the Norwegian margin (Cartwright, 2007;

Neagu, 2010b) revealed that the magnitude of the throw at the level of the TZA/CT across each

extensional polygonal fault is typically less than the true stratigraphic throw of the host

stratigraphy on the same fault (Figs. 7A, B). This key observation has been attributed to the

arrest of silica diagenesis, possibly since Late Miocene, prior to the last phase of faulting

across the TZA/CT and its nearby strata (Cartwright, 2007; Neagu et al., 2010a; Neagu et al.,

2010b). 

— Argument

Having accumulated the minimum local throw values at the level of the TZA/CT in the mid-

Norwegian margin, while a substantial proportion of the total fault displacement actively

accumulated on the fault surface above and below the position of the TZA/CT may reveal the

activity of a post-arrest phase of fault growth (Neagu et al., 2010a). Furthermore, the upper

fault tip displacement distribution argues that the post-arrest youngest active fault phase

results in the shallowest tip propagation and these faults have the largest offsets of the TZA/CT

(Neagu et al., 2010a). The usually greater throw in the opal-CT interval below the TZA/CT and

the effective cessation of displacement in the interval above it seem consistent with the

suggested notion of an arrested upward migration of silica diagenesis within the deep-sea

sediments of NE Atlantic margin. This scenario is however plausible only if the displacement

rate of the fault was equal to or less than the ascent rate of the migrating diagenetic front

prior to the arrest of diagenesis and the last period of faulting (Fig. 12). Contrary to this

scenario, the same relationship (the TZA/CT throw across polygonal faults lower than the true
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stratigraphic offset) could occur during active silica diagenesis if the fault displacement rate

was higher than the rate of TZA/CT migration through the overlying opal-A sediment in the NE

Atlantic margin basins. This interpretation accords with findings of Shin et al. (2008),

Cartwright (2011), Davies and Ireland (2011), and Hooker et al. (2017) concerning syn-

diagenetic origin of polygonal faults. According to these works, particle dissolution during

diagenesis may cause contraction of host stratigraphy, sediment failure, and hence polygonal

faulting. Marked displacement accumulation on the faults above and below the TZA/CT,

compared to the displacement minima at the depth of this boundary, can be related to strain

softening of the host strata during ongoing diagenesis, which leads to the later failure along

existing faults (after Wrona et al., 2017b). Due to their massively different material behaviour,

the shear strength of opal-CT cemented mudstones is however higher than that of opal-A

uncemented sediments (Bjorlykke and Hoeg, 1997), therefore the strain softening of

cemented mudstones would need to be experimentally validated. Furthermore, the second

scenario (fault displacement rates higher than the rate of TZA/CT upward advance) is possible

if very low rates of the order of mm per 1000 years for TZA/CT migration are assumed, but

these rates are effectively static relative to the burial and heating rate. Following these

opposite scenarios, the evidence offered based solely on polygonal faults is not strong proof

of the present-day diagenetic state of the TZA/CT, i.e. whether silica diagenesis across the

opal-A to opal-CT transition zone is an arrested reaction.

3. Discussion

From the preceding review of criteria for determining the diagenetic state of silica reaction

boundaries, it is evident that relationships between the TZA/CT and contemporaneous

deformation, including polygonal faults, differential compaction folds, and tectonic folds can

provide firm indications of the arrest of the upward migration of a silica diagenetic front at a

regional scale (Neagu et al., 2010b; Table 2) . Individual examples of each mode of

deformation and their relationship to the TZA/CT is not as convincing for assessing the putative

arrest of the TZA/CT as when disparate lines of evidence point in the same direction. In case of

the mid-Norwegian margin section, for instance, as documented by Neagu et al. (2010b), the

obviously smaller offset of the TZA/CT at each polygonal fault than the true offset of embedding

strata could comparably occur either concomitant with upward ascent of the boundary or after

the cessation of silica diagenesis, as for the TZA/CT from the NE Atlantic basin offshore UK

(Davies and Cartwright, 2002). Observation of the systematic attenuation of differential

folding process through the shallower strata overlying the transition zone either proportional

to the sluggish upward advance of the TZA/CT or prior to arrest of silica diagenesis suggests
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that a line of evidence based only on differential compaction folding is not a solid record for

arrest of silica diagenesis across the TZA/CT in these basins. Regional folding of the TZA/CT

offers to some extent more reliable arrest proofs of silica diagenesis than the polygonal faults

and differential compaction folds, provided that in both basins the deformed geometry of the

TZA/CT has been commonly more impacted and complicated by anticlinal–synclinal systems

than overburden architecture.

Compared to the deformational patterns discussed, discordance relative to present-day

thermal structure and possible exposure at seafloor are more credible diagnostic criteria for

arbitrating the diagenetic state of a TZA/CT at a regional scale. The non-parallel geometry of a

TZA/CT with the seabed and present-day isotherms provides strong record of regional arrest as

documented by Roaldset and He (1995) for the TZA/CT from the Barents Sea sediments and

by Brekke (2000) and Neagu et al. (2010b) for the TZA/CT in the mid-Norwegian margin, given

that local heat flow anomalies have caused the thermal structure of these basins to become

intricate, and have thus led to marked deviations of the TZA / C T from correspondence to

present isotherms. Due to heat flow variations in the host basin, the TZA/CT has departed from

equilibrium with temperature field in the basin; thus the non-parallelism of this boundary with

isothermal reflections. The contradictory interpretation for current state of the regionally

discordant-to-seabed TZA/CT from the Sea of Okhotsk proposed by Meadows and Davies

(2007) was challenged here, given that the reaction boundary has been more highly

complicated by structural deformations than by the geometry of its overburden. In contrast, a

BSR attitude can equally represent either active or arrested status of a TZA/CT as indicated by

Varkouhi et al. (2020) for the likely active characteristic of the transition zone penetrated by

the ODP Wells 794 and 795, but the arrested nature of the BSR TZA/CT drilled by the ODP Site

800. From this, a case can be made that while a non-BSR feature strongly supports arrested

state of a TZA/CT, a BSR geometry is not an independent reliable proof of ongoing silica

diagenesis. Among the seismic/structural criteria so far offered for diagenetic diagnosis of the

state of a TZA/CT, its truncation to the seabed as suggested by Varkouhi (2018) is the only

process that independently and with certainty leads to the arrest of diagenesis, provided that

overburden reduction and seafloor exposure of the TZA/CT cause running out of opal reserve

of the sediment, which results in the cessation of biogenic silica diagenetic reaction. In case

of the TZA / C T tracked in the deep-sea sediments from offshore southwestern Japan, the

discordant attitude this deformed (faulted/folded) and truncated boundary takes relative to the

seabed and the strata just below it indicates thermal disequilibrium of silica diagenesis

reaction with present temperature–depth relationships, and hence with the present-day
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isotherms in this region.

In conclusion, to draw a reliable interpretation for silica diagenesis in depositional settings at

a regional scale using seismic data, the recognition criteria reviewed above should all

together be taken into account in each study case. In case of the Nankai Trough TZA/CT, for

example, even though the exposure at the seabed is a certain indication for the arrest of its

upward advance, association with other modes of deformation, such as faulting and folding

have been utilised to further construe the arrested status of this reaction front. These

interpretational criteria of contribution the seismic/structural approach makes to the

understanding of silica diagenetic process are so far used by a small spectrum of research

over the past decades. This is, to the authors' knowledge, because seismic stratigraphy is yet

in its infancy stage and major advances in this research tool came first in the early 1980s with

the advent of 3D seismic mapping, and that high-resolution surveying this method offers has

only recently stimulated a new approach to the study of silica diagenesis. Because of its

limited vertical resolution, the seismic stratigraphy contains some fallibility, however the

usage of this medium still remains the most reliable method for the study of silica diagenesis

at a basin scale.
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Table 1. Seismic structural criteria for recognition of arrested and likely active silica fronts.

Criteria ‒ Arrested silica transition zones

- A non bottom simulating reflector
(Roaldset and He, 1995; Brekke, 2000; Neagu et al., 2010b)

- Exposure at present-day seafloor
(Varkouhi, 2018)

- Taking anticlinal–synclinal geometry at a regional scale
(Brekke, 2000; Davies and Cartwright, 2002; Neagu et al., 2010b)

- Deformation as differential compaction folding
(Neagu et al., 2010b)

- Deformation by polygonal fault systems
(Cartwright, 2007; Neagu et al., 2010a; Neagu et al., 2010b)

Criteria ‒ Likely active silica transition zones

- A bottom simulating reflector
(Hein et al., 1978; Lonsdale, 1990; Neagu et al., 2010b; Varkouhi et al.,
2020b)
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Table 2. A summary of the reviewed criteria for inferring the diagenetic state of TZA/CT, stratigraphic and thermal features/parameters

related to this assessment, qualitative level of reliability for each diagnostic indicator, and the sketches for different types of geometries

reviewed.

Reviewed identification
criterion

Likely
diagenetic

status

Other determinative stratigraphic/structural
and geothermal traits

Level of
confidence

Schematic geometry

Number Description

1 Bottom simulating
reflector

Active - Age constraints of diagenetic front
- Stratigraphic continuity of overlying sediment pile
- Biogenic-opal content of overburden
- Present-day geothermal gradient of host
sediment

Moderately
reliable

2 E x p o s u r e a t
present seafloor

Arrested - Discordance relative to near-seabed stratigraphy
- Response to tectonic deformation of host strata 
- Biogenic-silica reserve of overburden

Definitely reliable

3 N o n b o t t o m
simulating reflector

Arrested - Thermal disequilibrium with modern isotherms
- Structure more impacted by deformation than by
overburden architecture
- Age constraints of diagenetic front

Highly reliable
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Table 2. Continued.

4 Regional
anticlinal–synclinal
morphology

Arrested - Thermal-history contrast among different
deformed parts of diagenetic front
- Geometric pattern more influenced by structural
deformation than by stratigraphic array o f
overburden

Moderately
reliable

5 Differential
compaction folding

Arrested - Development of cellular morphology
- Petrophysical variations of host sediment
- Overburden response to differential subsidence

Slightly reliable

6 Polygonal faulting Arrested - Fault displacement contrast between diagenetic
front and host stratigraphy
- Non-tectonic compaction of host sediment

Slightly reliable

3–6 Association with
various
deformational
styles

Arrested - Disequilibrium with present isotherms
- Marked temperature contrast across deformed
zones of diagenetic front
- Structure more impacted by deformation than by
overburden geometry
- Response to tectonic and non-tectonic
compaction of host sediment and overburden
- Petrophysical variability of host sediment
- Age constraints of diagenetic front

Highly reliable
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Figure 1. A regionally folded non-BSR silica diagenesis reaction front (A) versus a BSR

transition zone (B). The non-BSR TZA/CT captured on seismic reflection profile near the

ODP Site 1022 in the California Margin represents a currently arrested boundary (modified

from Lyle et al., 1995a, 1995b; Shipboard Scientific Party, 1997). The parallelism the

undeformed TZA/CT, found on seismic section in Japan Basin, displays with the seafloor

likely indicates an active boundary (modified from Shipboard Scientific Party, 1990b;

Varkouhi et al., 2020b).

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958



Figure 2: Seismic profile from Møre Basin, Norwegian Sea Continental Margin (modified

from Neagu et al., 2010b). The regionally folded TZA / C T cross-cuts the present-day

isotherms (yellow lines). The isothermal curves are drawn based on the data presented in

Appendix I. For simplification, an average velocity of 2000 m/s was used for the

conversion of the depth of isotherms (reported in Appendix I) to the two-way travel time on

this seismic section. 
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Figure 3: Two-dimensional seismic profile from offshore Sakhalin, Sea of Okhotsk showing

the partly deformed TZA/CT (by polygonal faults) mimicking the Late Miocene Unconformity

above it (modified from Davies et al., 2008). Refer to Section 2.5 for a review of polygonal

faults. Note the development of funnel-shaped collapse features (red rectangles) as fluid-

scape structures above the level of the unconformity. 
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Figure 4: Likely active opal-A to opal-CT transition zone in the Sea of Japan represented

by a seabottom-simulating reflector (modified from International Ocean Discovery Program

Site Survey Data Bank, 2019). Note that the TZA/CT cuts across the stratal reflectors, but

mimicking the present-day seabed. A) A multi-channel seismic profile near Site 794 in the

Yamato Basin. B) A seismic line mapped across the central part of the Yamato Basin. C) A

single-channel seismic line over Site 795 in the Japan Basin.
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Figure 5: Likely arrested regional BSR opal-A to opal-CT transition zones. A) Cross-

sectional seismic profile obtained on approach to ODP Site 800 from the western Pacific

(modified from Shipboard Scientific Party, 1990c). The deformed shallow TZA/CT mimics the

overlying stratal reflection and the seabed. B) Seismic section hosting ODP Site 1124 in

North Island, New Zealand (after Shipboard Scientific Party, 1999). Note that the deformed

deep TZA/CT lies parallel to the present-day seafloor.
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Figure 6: Present-day geothermal gradient and hypothetical palaeo-geothermal gradient at

and in the vicinity of ODP Site 800 (drawn based on data from Shipboard Scientific Party,

1990c). Presently, the arrested TZA/CT penetrated by this borehole lies at ~ 50 mbsf, where

the temperature is 2.5 °C. The parallelism the TZA/CT shows with the Middle Miocene after-

hiatus base reflector suggests this reflector as the palaeo-seabed at that time (following

Neagu et al., 2010b; also see Fig. 5A). The overburden above the TZA/CT was therefore 20–

30 m thick during the Middle Miocene, and the seafloor temperature was 0.75 °C. Given

these depth and temperature constraints, a geothermal gradient of 70 °C/km was

necessary for ongoing silica diagenesis during the Late Cretaceous to late Early Miocene.
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Figure 7: Association of silica diagenesis transition zones with various modes of

deformation. A) A 3D seismic reflection section displaying the heavily faulted nature of the

TZA/CT from offshore Norway. Also seen is the ridge–depression structures at the TZA/CT,

and the development of differential folds in the interval above it (red rectangle) (modified

from Cartwright, 2007). B) Another 3D seismic profile from offshore Norway margin

showing the TZA/CT associated with polygonal faults, ridge–depression morphologies and

their overlying folds (red rectangle), and anticlinal–synclinal structures (data courtesy of

Statoil A/S). C) 2D seismic section from Faeroe-Shetland basin on the NE Atlantic margin

showing the heavily deformed faulted/folded regional TZA/CT. The transition is also involved

in ridge–depression structures (red rectangle) and serrated features (yellow rectangle)

(modified from Davies and Cartwright, 2002).
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Figure 8:  Seismic cross-sectional image from the Nankai Trough showing the truncation of

TZA/CT reflector at the eroded seafloor over the steep ridge slope (modified from McAdoo et

al., 2004). Note the association of this arrested boundary with other modes of deformation,

such as faults and regional folding.
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Figure 9: Geoseismic profile of Vøring Basin in the Norwegian Sea Continental Margin

(redrawn and modified from Blystad et al., 1995). Note the non-BSR TZA/CT (red line) cross-

cutting domal nearby strata is itself involved in regional anticlinal–-synclinal structures, but

roughly mimics the overlying Upper Pliocene Unconformity.
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Figure 10: Serrated morphology in opal-A to opal-CT transition zones. A) Serrated pattern

in the TZA/CT from Møre Basin, mid-Norwegian margin. B) Close-up view of serrated feature

in the TZA/CT from Faeroe-Shetland basin (yellow rectangle in Fig. 7C). 
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Figure 11: Sketch showing presumed pattern for the development of differential

compaction folds above the TZA / C T in the Neogene sediments of NE Atlantic margin.

Orange curved arrows mark the direction of overburden porosity collapse. Red arrows

along the polygonal faults denote the direction of hot-fluid flux. Note that the fold relief

decreases upward in pace with the reduction in differential porosity collapse (orange

arrows on the right side of the profile). The diagenetic state of the TZA/CT, however, cannot

be confidently determined based on this model.
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Figure 12: Presumed schemes of relationships between faulting and diagenetic state of

the TZA/CT in the Miocene deposits of NE Atlantic margin. The abbreviations represent: D1

= displacement along the fault during ongoing silica diagenesis, T1 = throw along the fault

during ongoing silica diagenesis, UA = TZA/CT upward advancement, D2 = displacement

along the fault after arrest of silica diagenesis since Late Miocene, T2 = throw along the

fault after arrest of silica diagenesis, and θ = fault dip angle.
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Appendix I: The borehole sites used for drawing the isothermal curves in Figure 2. For

every well, the vertical depth, the seafloor temperature, and the geothermal gradient are

presented. Also listed is the depth of isotherms computed for five temperature layers, from

10 to 50 °C. Refer to Neagu et al. (2010b) for the geographic location of these boreholes.

Borehole
site

Minimum distance
from start point along
NW–SE profile in Fig.

2 (km)

Borehole
depth
(mbsf)

Seabed
temperature

(°C)

Geothermal
gradient
(°C/km)

Isotherm (°C)

10 20 30 40 50

Depth of isotherm (mbsf)

6505/10-1 10.3 4319 0 35 286 571 857 1143 1429

6403/6-1 20.4 2374 -2.5 45 278 500 722 944 1167

6403/10-1 41.2 1656 -2 46 261 478 696 913 1130

6405/7-1 68.2 3000 -0.7 42 255 493 731 969 1207

6404/11-1 72.8 2130 -1 44 250 477 705 932 1159

6405/10-1 88.3 2231 -0.5 40 263 513 763 1013 1263

ODP 642 149.8 1229 0 40 250 500 750 1000 1250
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