166 research outputs found

    Using stable isotopes to determine migratory connectivity in birds: extent and limitations

    Get PDF
    La necesidad de determinar la conectividad migratoria en diversas especies de aves ha generado el surgimiento de numerosas técnicas de marcado para determinar el origen geográfico de individuos. El uso de la composición de isótopos estables en tejidos animales es una de las técnicas que más se desarrollaron en los últimos tiempos. Su uso se basa, primero, en que los valores isotópicos de diferentes elementos químicos varían espacialmente debido a procesos naturales y de origen humano. Segundo, en que un individuo, al alimentarse, asimila y eventualmente refleja en sus tejidos la composición isotópica del sitio donde se está alimentando. El tejido más utilizado en este tipo de análisis es el de las plumas remeras, ya que, al crecer, asimilan la composición isotópica del alimento, y luego permanecen metabolicamente inactivas hasta el próximo evento de muda. Aunque esta técnica ha sido exitosamente aplicada en distintas especies de aves, la variabilidad observada entre individuos limita de cierta forma su precisión. Esta variabilidad puede ser producto de diferentes procesos que afectan el cambio isotópico entre la dieta y los tejidos de la especie de interés, de desplazamientos durante el periodo de muda o de variaciones en la línea de base isotópica (cambios en los valores isotópicos de hidrógeno en las precipitaciones). Conocer y entender las fuentes de error puede ayudar a diseñar mejores estudios que minimicen la variabilidad y a desarrollar mejores modelos predictivos para determinar el origen geográfico de un individuo.The need to unravel migratory connectivity in different bird species has generated the development of several techniques to determine the geographical origin of individuals. Using the stable isotopes composition of animal tissues is one of the emerging techniques that had the greatest development. The principles of the technique are, first, that there is a geographical pattern in stable isotopes values, as a result of natural and anthropogenic processes, and, second, that stable isotopes are assimilated when an organism eats, and eventually they become fixed in animal tissues, in proportions related to the natural abundance in the environment. The most commonly used tissue is from flight feathers, since they incorporate the stable isotope composition of the food and, once moult is finished, they stay metabolically inactive until they are replaced. Although this technique has been applied with success in several species, variability found within birds from the same origin limits its potential accuracy. This variability could be the result of different processes affecting the isotopic change between food and tissues of the target species, winter movements, or baseline changes through time (temporal changes in the hydrogen isotopic values in precipitation). A better understanding of the sources of error would help to design better studies in order to minimize variability and to develop better models to determine the geographic origin of individual birds

    Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits

    Get PDF
    Cichlid fishes’ famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co‐evolved with sexual dimorphism in opsin expression. We investigated sex‐specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated datasets on sex‐specific body coloration, species‐specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analyzed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels ‐ even in sexually dimorphic cichlid species – which argues against coevolution of sexual dichromatism and differences in sex‐specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colorful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyper‐diverse lineage

    Evolutionary Dynamics of Structural Variation at a Key Locus for Color Pattern Diversification in Cichlid Fishes

    Get PDF
    Color patterns in African cichlid fishes vary spectacularly. Although phylogenetic analysis showed already 30 years ago that many color patterns evolved repeatedly in these adaptive radiations, only recently have we begun to understand the genomic basis of color variation. Horizontal stripe patterns evolved and were lost several times independently across the adaptive radiations of LakeVictoria, Malawi, and Tanganyika and regulatory evolution of agouti-related peptide 2 (agrp2/asip2b) has been linked to this phenotypically labile trait. Here, we asked whether the agrp2 locus exhibits particular characteristics that facilitate divergence in color patterns. Based on comparative genomic analyses, we discovered several recent duplications, insertions, and deletions. Interestingly, one of these events resulted in a tandem duplication of the last exon of agrp2. The duplication likely precedes the EastAfrican radiations that started 8-12 Ma, is not fixed within any of the radiations, and is found to vary even within some species. Moreover, we also observed variation in copy number (two to five copies) and secondary loss of the duplication, illustrating a surprising dynamic at this locus that possibly promoted functional divergence of agrp2. Our work suggests that such instances of exon duplications are a neglected mechanism potentially involved in the repeated evolution and diversification that deserves more attention.Peer reviewe

    Asymmetry in genitalia is in sync with lateralized mating behavior but not with the lateralization of other behaviors

    Get PDF
    Asymmetries in bilateral organisms attract a lot of curiosity given that they are conspicuous departures from the norm. They allow the investigation of the integration at different levels of biological organization. Here we study whether and how behavioral and asymmetrical anatomical traits co-evolved and work together. We ask if asymmetry is determined locally for each trait or at a whole individual level in a species bearing conspicuous asymmetrical genitalia. Asymmetric genitalia evolved in many species; however, in most cases the direction of asymmetry is fixed. Therefore, it has been rarely determined if there is an association between the direction of asymmetry in genitalia and other traits. In onesided livebearer fish of the genus Jenynsia (Cyprinodontiformes, Anablepidae), the anal fin of males is modified into a gonopodium, an intromittent organ that serves to inseminate females. The gonopodium shows a conspicuous asymmetry, with its tip bending either to the left or the right. By surveying 13 natural populations of Jenynsia lineata, we found that both genital morphs are equally common in wild populations. In a series of experiments in a laboratory population, we discovered asymmetry and lateralization for multiple other traits; yet, the degree of integration varied highly among them. Lateralization in exploratory behavior in response to different stimuli was not associated with genital morphology. Interestingly, the direction of genital asymmetry was positively correlated with sidedness of mating preference and the number of neuromasts in the lateral line. This suggests integration of functionally linked asymmetric traits; however, there is no evidence that asymmetry is determined at the whole individual level in our study species.Fil: Torres Dowdall, Julián Roberto. Universität Konstanz; AlemaniaFil: Rometsch, Sina J.. Universität Konstanz; AlemaniaFil: Aguilera, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundación Miguel Lillo. Dirección de Zoología. Instituto de Vertebrados. Sección Ictiología; ArgentinaFil: Goyenola, Guillermo. Universidad de la Republica. Centro Universitario Regional del Este.; UruguayFil: Meyer, Axel. Universität Konstanz; Alemani

    Molecular and morphological convergence to sulfide-tolerant fishes in a new species of Jenynsia (Cyprinodontiformes: Anablepidae), the first extremophile member of the family

    Get PDF
    Freshwater sulfide springs have extreme environmental conditions that only few vertebrate species can tolerate. These species often develop a series of morphological and molecular adaptations to cope with the challenges of life under the toxic and hypoxic conditions of sulfide springs. In this paper, we described a new fish species of the genus Jenynsia, Anablepidae, from a sulfide spring in Northwestern Argentina, the first in the family known from such extreme environment. Jenynsia sulfurica n. sp. is diagnosable by the lack of scales on the pre-pelvic area or the presence of a single row of scales, continuous or not, from the isthmus to the bases of the pelvic fins. Additionally, it presents a series of morphological and molecular characteristics that appear convergent with those seen in other fish species (e.g., Poeciliids) inhabiting sulfide springs. Most notably, J. sulfurica has an enlarged head and postorbital area compared to other fish of the genus and a prognathous lower jaw with a hypertrophied lip, thought to facilitate respiration at the air-water interface. Analyses of cox1 sequence showed that J. sulfurica has two unique mutations resulting in amino acid substitutions convergent to those seen in Poeciliids from sulfide springs and known to provide a physiological mechanism related to living in sulfide environments. A phylogenetic analysis, including molecular and morphological characters, placed J. sulfurica as sister taxa to J. alternimaculata, a species found in nearby, non-sulfide habitats directly connected to the sulfide springs. Thus, it can be inferred that the selection imposed by the presence of H2S has resulted in the divergence between these two species and has potentially served as a barrier to gene flow.Fil: Aguilera, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Teran, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Mirande, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Alonso, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Rometsch, Sina. University Of Konstanz, Germany; AlemaniaFil: Meyer, Axel. University Of Konstanz, Germany; AlemaniaFil: Torres Dowdall, Julián Roberto. University Of Konstanz, Germany; Alemania. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada; Argentin

    Molecular and morphological convergence to sulfide-tolerant fishes in a new species of Jenynsia (Cyprinodontiformes: Anablepidae), the first extremophile member of the family

    Get PDF
    Freshwater sulfide springs have extreme environmental conditions that only few vertebrate species can tolerate. These species often develop a series of morphological and molecular adaptations to cope with the challenges of life under the toxic and hypoxic conditions of sulfide springs. In this paper, we described a new fish species of the genus Jenynsia, Anablepidae, from a sulfide spring in Northwestern Argentina, the first in the family known from such extreme environment. Jenynsia sulfurica n. sp. is diagnosable by the lack of scales on the pre-pelvic area or the presence of a single row of scales, continuous or not, from the isthmus to the bases of the pelvic fins. Additionally, it presents a series of morphological and molecular characteristics that appear convergent with those seen in other fish species (e.g., Poeciliids) inhabiting sulfide springs. Most notably, J. sulfurica has an enlarged head and postorbital area compared to other fish of the genus and a prognathous lower jaw with a hypertrophied lip, thought to facilitate respiration at the air-water interface. Analyses of cox1 sequence showed that J. sulfurica has two unique mutations resulting in amino acid substitutions convergent to those seen in Poeciliids from sulfide springs and known to provide a physiological mechanism related to living in sulfide environments. A phylogenetic analysis, including molecular and morphological characters, placed J. sulfurica as sister taxa to J. alternimaculata, a species found in nearby, non-sulfide habitats directly connected to the sulfide springs. Thus, it can be inferred that the selection imposed by the presence of H2S has resulted in the divergence between these two species and has potentially served as a barrier to gene flow.Fil: Aguilera, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Teran, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Mirande, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Alonso, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Rometsch, Sina. University Of Konstanz, Germany; AlemaniaFil: Meyer, Axel. University Of Konstanz, Germany; AlemaniaFil: Torres Dowdall, Julián Roberto. University Of Konstanz, Germany; Alemania. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada; Argentin

    Environmental change, if unaccounted, prevents detection of cryptic evolution in a wild population

    Get PDF
    Detecting contemporary evolution requires demonstrating that genetic change has occurred. Mixed effects models allow estimation of quantitative genetic parameters and are widely used to study evolution in wild populations. However, predictions of evolution based on these parameters frequently fail to match observations. Here, we applied three commonly used quantitative genetic approaches to predict the evolution of size at maturity in a wild population of Trinidadian guppies. Crucially, we tested our predictions against evolutionary change observed in common-garden experiments performed on samples from the same population. We show that standard quantitative genetic models underestimated or failed to detect the cryptic evolution of this trait as demonstrated by the common-garden experiments. The models failed because (1) size at maturity and fitness both decreased with increases in population density, (2) offspring experienced higher population densities than their parents, and (3) selection on size was strongest at high densities. When we accounted for environmental change, predictions better matched observations in the common-garden experiments, although substantial uncertainty remained. Our results demonstrate that predictions of evolution are unreliable if environmental change is not appropriately captured in models

    Contrasting signatures of genomic divergence during sympatric speciation

    Get PDF
    Population genomic analyses of Midas cichlid fishes in young Nicaraguan crater lakes suggest that sympatric speciation is promoted by polygenic architectures. The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin(1,2). Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process(3). Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs(4), but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories(5). Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.Peer reviewe

    Population-Level Responses of Life History Traits to Flow Regime in Three Common Stream Fish Species

    Get PDF
    Trait-based approaches may improve understanding in ecology by linking environmental variation to fitness-related characteristics of species. Most trait-environment studies focus on assemblage-level relationships; yet intraspecific trait variation is important for community, ecosystem, and evolutionary processes and has substantial implications for these approaches. Assessing population-level trait-environment relationships could test the generality of trait models while assessing intraspecific variation. We evaluated the generality of the trilateral life history model (TLHM of Winemiller and Rose 1992: opportunistic, periodic, and equilibrium endpoints) for fishes - a well-studied trait-environment model at the assemblage level - to populations of three stream fishes in the Midwestern United States in relation to flow regime. The TLHM adequately described major trade-offs in traits among populations in all species. Some TLHM flow-based predictions were confirmed, with periodic traits (high fecundity) favored at sites with greater flow seasonality and lower flow variability in two species, and equilibrium traits (large eggs) in more stable flow conditions in two species. Size at maturity was also inversely related to variability in one species. However, relationships contradicting the TLHM were also found. Coupled with the explanatory power of the TLHM for populations, supporting relationships suggest that synthesizing habitat template models with demographic life history theory could be valuable. Trait-environment models that are well-supported at multiple levels of biological organization could improve understanding of the impacts of environmental change on populations and communities and the valuable ecosystem services that they support
    corecore