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abstract: Detecting contemporary evolution requires demonstrat-
ing that genetic change has occurred. Mixed effects models allow es-
timation of quantitative genetic parameters and are widely used to
study evolution in wild populations. However, predictions of evolu-
tion based on these parameters frequently fail to match observations.
Here, we applied three commonly used quantitative genetic ap-
proaches to predict the evolution of size at maturity in a wild popu-
lation of Trinidadian guppies. Crucially, we tested our predictions
against evolutionary change observed in common-garden experi-
ments performed on samples from the same population. We show
that standard quantitative genetic models underestimated or failed
to detect the cryptic evolution of this trait as demonstrated by the
common-garden experiments. The models failed because (1) size at
maturity and fitness both decreased with increases in population den-
sity, (2) offspring experienced higher population densities than their
parents, and (3) selection on size was strongest at high densities.
When we accounted for environmental change, predictions better
matched observations in the common-garden experiments, although
substantial uncertainty remained. Our results demonstrate that pre-
dictions of evolution are unreliable if environmental change is not
appropriately captured in models.
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Introduction

Predictions of evolution based on quantitative genetic
theory frequently fail to match observations of change
(or lack thereof ) in wild populations (Merilä et al. 2001;
Gienapp et al. 2008; Pujol et al. 2018; Walsh and Lynch
2018). Detecting contemporary evolution in natural pop-
ulations is challenging enough (Merilä et al. 2001; Kruuk
2004; Kruuk et al. 2008; Pemberton 2010); understanding
why predictions about evolution often fail creates a much
larger and more important challenge (Pujol et al. 2018).
There are three widely used quantitative genetic ap-

proaches for modeling contemporary evolution: (1) the
breeder’s equation, (2) the secondary theorem of selec-
tion, and (3) the change in estimated breeding values.
The univariate breeder’s equation (Lush 1937) predicts
the change in the population mean trait value due to se-
lection and is formalized as

Dz p h2S, ð1Þ
where Dz is the response to selection (i.e., the change in
mean breeding value per generation), h2 is the (narrow-
sense) heritability of the trait, and S is the selection differ-
ential. The heritability is the proportion of population-level
variation in a trait that can be explained by genetic differ-
ences among individuals, given by the ratio of the addi-
tive genetic variance VA(z) to the total phenotypic variance
VP(z). The selection differential describes the relationship
between the trait and fitness, which is given by their phe-
notypic covariance covz(z,w). The breeder’s equation in
its multivariate form allows predictions of responses to
selection for any number of genetically correlated traits
(Lande and Arnold 1983). By accounting for the genetic
covariance among multiple traits and their relationship
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to relative fitness, themultivariate breeder’s equation should
accurately predict evolutionary change, provided that all
correlated traits that influence fitness are included in the
model (Lande and Arnold 1983).
An alternative approach to describing evolutionary

change was developed by Robertson (1966) and inde-
pendently formalized by Price (1970) shortly afterward.
The secondary theorem of natural selection (also known
as the Robertson-Price identity) states that the expected
change in mean trait value per generation, Dz, is equal to
the additive genetic covariance covA of the trait z and
relative fitness w:

Dz p covA(z,w): ð2Þ
By considering only the genetic relationship between a
trait and relative fitness, the secondary theorem of selec-
tion does not require all traits that influence fitness to be
measured, nor does it assume that selection on the pheno-
type is equal to selection on the genotype, as in the breed-
er’s equation (Morrissey et al. 2010, 2012). As a result,
predictions of evolutionary change from the breeder’s equa-
tion and the secondary theorem of selection may differ,
with the latter often considered the more robust model
of evolutionary change (Morrissey et al. 2010, 2012; Bon-
net et al. 2017).
A third method of quantifying contemporary evolution

is to describe the change in estimated breeding values over
time. An individual’s breeding value is the sum of the ad-
ditive genetic effects on its phenotype (Lynch and Walsh
1998). While a change in true breeding values over time
is synonymous with evolutionary change, care is required
when interpreting changes in estimated breeding values
(Postma 2006; Hadfield 2008; Hadfield et al. 2010). Many
applications of this approach in studies of wild populations
have generated biased and anticonservative estimates of
evolutionary change (reviewed and discussed in Hadfield
et al. 2010). However, with appropriate modeling frame-
works, contemporary evolution can be quantified by the
temporal change in the population mean predicted breed-
ing value.
All of these approaches rely on accurate decomposition

of phenotypic variances and covariances into additive
genetic and environmental components. The statistical
foundation for this decomposition is the so-called animal
model. Animal models are mixed effects models for the
phenotype that are structured with a relatedness matrix
(Henderson 1950; Lynch and Walsh 1998; Kruuk 2004).
The basic animal model assumes an additive genotype-
phenotype map, where an individual’s phenotype P (with
respect to the population mean value) is given by the sum
of the breeding value G and the environmental compo-
nent E—that is, P p G1 E. Animal models estimate G
by assessing phenotypic similarity among all pairs of rela-
tives, while E is described by the residual (Lynch and
Walsh 1998). As such, E is broadly defined and captures
not only the effect of environmental factors on the expres-
sion of traits (i.e., phenotypic plasticity) but also those of
nonadditive genetic effects (i.e., dominance and epistasis;
Lynch andWalsh 1998). Animal models maximize the in-
formation on relatedness obtained from natural pedigrees
and are robust to (randomly) missing and unbalanced
data, and so they are considered well suited to inferring
quantitative genetic parameters in natural systems (Lynch
and Walsh 1998; Kruuk 2004; Wilson et al. 2010). Animal
models are frequently used to quantify evolution in the
wild, by estimating breeding values and parameters for
the breeder’s equation and the secondary theorem of selec-
tion (Merilä et al. 2001; Grant and Grant 2002; Kruuk et al.
2008; Charmantier et al. 2014). However, the use of animal
models in wild populations has revealed that despite the
presence of heritable genetic variance and selection, there
is frequently no observable change in themean phenotype,
a phenomenon termed “the paradox of stasis” (Merilä et al.
2001; Gienapp et al. 2008; Pujol et al. 2018; Walsh and
Lynch 2018).
The crux of the paradox of stasis is that quantitative ge-

netic approaches can accurately describe the response to
selection in captive-bred organisms but not in wild pop-
ulations. A logical first step in resolving this paradox is
to identify fundamental differences between artificial and
natural selection. Themain difference, undoubtedly, is that
breeders target selection on specific traits, whereas natural
selection acts on the full phenotype of the organism. The
multivariate breeder’s equation addresses this issue to a
degree by accounting for indirect selection through geneti-
cally correlated traits (Lande and Arnold 1983). The esti-
mation of breeding values is also sensitive to the omission
of correlated traits that are under selection; bias in estima-
tion of breeding values is reduced when correlated traits
are included in the animal model (Pollak et al. 1984).
The secondary theorem of selection bypasses this problem
by considering selection only at the genetic level and mak-
ing no inference about selection at the phenotypic level
(Robertson 1966; Price 1970; Morrissey et al. 2012).
Another critical difference between artificial and natu-

ral selection is that of environmental variability (Walsh
and Lynch 2018, chap. 20). Animal and plant breeders
purposefully reduce environmental variation among indi-
viduals by making rearing conditions as similar as possi-
ble and providing nutrition, shelter, and protection from
disease. In contrast, environmental factors in the wild
may change substantially over time and space, generating
considerable variation in phenotype and fitness within the
population. In addition, dynamic environments may re-
sult in fluctuations in the target, magnitude, and direction
of selection (e.g., Price et al. 1984; Hairston and Dillon
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1990; Grant and Grant 2002); ignoring such effects could
lead to erroneous predictions of evolution in the wild.
Not only does environmental variability have a direct in-

fluence on evolution in wild populations, it can also affect
the results of statistical approaches we use to quantify
evolutionary change. Here, we consider how subgroup ef-
fects—environmental sources of phenotypic variation
that differ in magnitude between subgroups of a popula-
tion—can bias estimates of quantitative genetic param-
eters from animal models. Subgroup effects vary spatio-
temporally, such that there are broad-scale differences in
the environmental conditions experienced among groups
of individuals within the population as a whole. If sub-
group effects are not explicitly accounted for, two distinct
problemsmay arise. First, when relatives experience differ-
ent subgroup effects, estimation of additive genetic (co)
variances will be biased. This effect can occur within a
generation between siblings or cousins or between gener-
ations between parents and offspring. Second, subgroup
effects can lead to the regression model not capturing
the causal relationship between traits and fitness. Both
of these problems may lead to misestimation of the evo-
lutionary trajectory.
Regarding the first problem, if relatives consistently

experience different subgroup effects, the genotype-
phenotype map is no longer strictly additive, because G
and E are not independent. Estimation of VA assumes that
phenotypic similarity among relatives is due to shared ge-
netic elements of additive effect on the phenotype (Lynch
andWalsh 1998). Nongenetic sources of similarity among
relatives are routinely taken into consideration when es-
timating VA using animal models (e.g., maternal effects
[Wilson et al. 2010], birth year [Kruuk and Hadfield 2007],
common rearing environment [Kruuk et al. 2001], and
spatial autocorrelation [Stopher et al. 2012]). Doing so pre-
vents upward bias when estimating VA.
Nongenetic causes of dissimilarity (rather than similar-

ity) among relatives are less often accounted for. If parents
and offspring experience different environments, their
phenotypes and fitness will be less similar than if they
had experienced the same conditions. For example, in a
population growing toward carrying capacity, parents will
experience higher per capita resource availability than
their offspring; that is, there is a difference in subgroup ef-
fects between parents and offspring with respect to re-
source availability. This environmentally induced dissim-
ilarity among relatives could result in underestimation of
VA and misestimation of genetic covariances and breed-
ing values.
When subgroup effects vary over time, a special case of

the first problem occurs when estimating the change in
breeding values. Estimation of breeding values in a simple
animal model assumes that the environment is constant
in time and space across the whole population (Postma
2006; Mrode 2014). Under this assumption, estimated
breeding values will partially reflect the environmental com-
ponent of the phenotype (Postma 2006). As such, when sub-
group effects are not modeled, a change in estimated breed-
ing values may reflect phenotypic rather than true genetic
change (Postma 2006; Hadfield et al. 2010).
Even when relatives experience the same subgroup ef-

fects, the second problem—of regressionmodels capturing
noncausal associations between traits and fitness—can
arise when selection is estimated across the entire popula-
tion, as is typical in studies of wild populations using ani-
mal models. Environmental factors that influence both
traits and fitness can bias estimates of selection gradients
(Rausher 1992; Stinchcombe et al. 2002). For example,
consider a population in which two subgroups differ only
in experiencing high or low resource availability. If trait z
and fitness w are both greater at high resource availability,
the phenotypic selection gradient will be positive when es-
timated across both subgroups even if covz(z,w) within
subgroups is zero. In this case, the regression model cap-
tures a noncausal association between z andw; the pheno-
typic selection gradient is entirely dependent on envi-
ronmental factors rather than any real effect of the trait
on fitness.
These statistical problems are likely inherent to stud-

ies of wild populations. A potential solution is to include
subgroup-specific measurements of environmental factors
as covariates in the animal model, to “correct” phenotypes
and fitness prior to estimating breeding values, additive
genetic variances, and selection. Including subgroup effects
as covariates changes the mean part of the animal model.
Instead of having a single population mean value around
which G and E are estimated, the model fits subgroup-
specific mean values, accounting for subgroup-specific dif-
ferences in environmental factors. This reduces the prob-
lems of nonindependence of G and E and of noncausal
associations between traits and fitness, as described in
the previous paragraphs. However, for wild populations
it can be difficult to identify and quantify the relevant en-
vironmental factors (Walsh and Lynch 2018). Neverthe-
less, not accounting for subgroup effects may give rise to
incorrect estimates of quantitative genetic parameters in
wild populations, precluding accurate estimation of evolu-
tionary change.
Regardless of which model is used to predict pheno-

typic change, quantitative genetic predictions and phe-
notypic observations from field data are rarely corrobo-
rated with independent data characterizing evolutionary
change of the same population (although see Van Asch
et al. 2013; Geerts et al. 2015). Common-garden experi-
ments, in which population samples from before and af-
ter selection are reared under identical environmental
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conditions, can determine whether a change in the mean
phenotype is due to evolution (Kawecki and Ebert 2004;
Pemberton 2010). Common-garden experiments remove
the influence of subgroup effects on the phenotype and
thereby overcome the challenges posed by spatiotemporal
environmental variation to quantitative genetic predic-
tions of evolution. A difference in the phenotypic mean
between ancestral and derived populations reared under
common-garden conditions is strong evidence for evolu-
tion and thus is considered the “gold standard” for dem-
onstrating evolutionary change in natural populations
(Pemberton 2010;Walsh and Lynch 2018). Although by
themselves common-garden experiments do not demon-
strate the causes of evolutionary change (they do not dis-
tinguish changes caused by selection from those caused
by drift or gene flow), they are in principle the standard
against which model-based predictions of evolutionary
change and field observations of changes in mean pheno-
type can be calibrated.
Here, we explore the problem of accurately predicting

evolution under changing environmental conditions. We
used animal models based on 3 years of mark-recapture
data for a pedigreed, wild experimental population of Trin-
idadian guppies (Poecilia reticulata) to generate predic-
tions of evolutionary change based on the breeder’s equa-
tion, the secondary theorem of selection, and the change
in estimated breeding values. We then compared these
predictions to observations of phenotypic change made
in common-garden experiments as well as to the pheno-
typic change observed in the field data over the course
of the study. The match was, in general, poor. However,
when we accounted for environmental change when esti-
mating quantitative genetic parameters, predictions based
on the secondary theorem of selection and the change in
estimated breeding values better matched the observation
of change derived from the common-garden experiment.
We discuss our results in the context of the challenges im-
posed by systematic environmental change when quantify-
ing evolution.
Methods

Overview of Experimental Design

Our two objectives in this study were to assess (1) howwell
quantitative genetic predictions match observations of
evolutionary change in a wild population and (2) whether
explicitly modeling subgroup effects improves the accuracy
of predictions. Our study population is an experimentally
introduced wild population of Trinidadian guppies. To
generate predictions, we fit animal models with mark-
recapture data from our study population, then parameter-
ized quantitative genetic models of evolutionary change.
We fit animal models both with and without subgroup
effects as covariates. To observe evolutionary change, we
performed annual common-garden experiments compar-
ing traits between the introduced and ancestral popula-
tions. If quantitative genetic parameters can be accurately
estimated, predictions of evolution should match the
changes observed in common-garden experiments where
environmental effects are controlled.
We used three quantitative genetic approaches to pre-

dict evolutionary change over a 3-year period: the univar-
iate breeder’s equation, the secondary theorem of selec-
tion, and the change in estimated breeding values. We
considered a single trait—male size at maturity—and used
relative lifetime reproductive success as our measure of
fitness. Using bivariate animal models, we estimated indi-
vidual breeding values and additive genetic and pheno-
typic variances and covariances among size at maturity
and fitness. We fit animal models both with and without
subgroup-specific environmental factors as covariates, to
determine how changes in environmental conditions over
the course of the study influenced the expression of traits
and the estimation of quantitative genetic parameters and
breeding values. To describe the temporal dynamics of
evolutionary change, we used piecewise linear regression
of the change in estimated breeding values with time, al-
lowing different slopes in each year. Finally, we calculated
the expected change in trait values according to our three
quantitative genetic approaches and compared these pre-
dictions to the observed change in trait values seen in
(i) the study population field data (i.e., without correction
of subgroup effects) and (ii) guppies reared under common-
garden conditions (i.e., corrected for subgroup effects).
All analyses were conducted in R (R Core Team 2018).
Data and code underlying the analyses and figures in
this article have been deposited in the Dryad Digital Re-
pository (https://doi.org/10.5061/dryad.jm63xsj7k; Potter
et al. 2020).
Study Population

Trinidadian guppies are small live-bearing fish native to
freshwater streams in Trinidad. Guppies display two dis-
tinct ecotypes that are defined by the intensity of local
predation pressure. These ecotypes differ in a number
of morphological, life-history, behavioral, and physiolog-
ical traits. For example, the low-predation ecotype ma-
tures at larger sizes; has fewer, larger offspring per litter;
and has lower reproductive rates than the high-predation
ecotype (Reznick and Endler 1982; Reznick 1982b; Rez-
nick and Bryga 1987). These differences have a genetic ba-
sis and have independently evolved in several different
streams throughout Trinidad (Reznick 1982a; Alexander
et al. 2006). The evolution of the low-predation ecotype is

https://doi.org/10.5061/dryad.jm63xsj7k
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driven by increased population density rather than being
the direct result of reduced predation pressure (Bassar
et al. 2013; Reznick et al. 2019).
Our study population is located in the Lower Lalaja, a

tributary to the Guanapo River in the Northern Range
Mountains of Trinidad. This population is part of a long-
standing introduction experiment, described in detail
elsewhere (Travis et al. 2014; Reznick et al. 2019). In brief,
high-predation ecotype guppies were introduced to a
closed section of a previously guppy-free, low-predation-
risk stream. This introduction replicates the upstream in-
vasion of guppies, which has occurred naturally multiple
times. The introduced population has since been censused
monthly. Each founder and subsequent recruits received a
unique identifying mark, and two scales were removed
from the caudal peduncle to sample for DNA. The mean
monthly probability of capturing an individual in a census
(given that it is alive) is 0.9 (Reznick et al. 2019). At each
census, standard length was recorded as the distance from
the tip of the snout to the hypural plate, recorded to the
nearest 0.1 mm; mass was recorded to the nearest milli-
gram, and the stage of sexual maturity in males was classi-
fied as either juvenile or mature, based on the development
of the intromittent organ. Unfortunately, we do not have
a similarmetric for characterizingmaturity status in wild-
caught females, so our study is limited to considering
males only.
Mark-Recapture and Pedigree Data

Our study focused on the first 3 years of the experimental
introduction, starting in March 2008. Because we were
interested in male size at maturity, our data set was re-
stricted to those males caught and measured while in the
juvenile stage (~14 mm standard length) and then caught
and measured a month later and determined to have
reachedmaturity.We recorded size atmaturity as the stan-
dard length of males when first recorded as having reached
maturity after having been observed to be immature in the
preceding month. Using the individual DNA samples, we
constructed a microsatellite-based pedigree for the intro-
duced population. We used this pedigree to structure the
animal models and to calculate individual lifetime repro-
ductive success. Full details on genotyping, pedigree con-
struction, and estimation of lifetime reproductive success
are provided in the supplemental PDF (available online).
Our final phenotypic data set included 851 individuals,
for which accurate estimates of lifetime reproductive suc-
cess and size at maturity were available. We trimmed our
pedigree to exclude lineages for which we had no pheno-
typic data. Our final pedigree contained relatedness data
for 1,506 individuals (male and female) over 3 years, with
a maximum depth of seven generations. We estimated
monthly population density as the number of individuals
captured in a given month’s census, adjusted for capture
probability, divided by the total area of the stream.
Common-Garden Experiments

Juvenile guppies (~12mm standard length) from the intro-
duced and ancestral populations were collected at yearly
intervals following the introduction, from 2009 to 2011.
To account for maternal and environmental effects, gup-
pies were reared for two generations under controlled en-
vironmental conditions. Fish were reared with a crossing
design that sustained the genetic diversity of the founders
and avoided inadvertent selection by equally representing
each line in each generation (Torres-Dowdall et al. 2012;
Handelsman et al. 2013; Ruell et al. 2013; Reznick et al.
2019). In the common-garden experiments, guppies were
reared at either high or low food levels. Because there
was no effect of any interaction between food level and
population (ancestral or introduced) on size at maturity
(Reznick et al. 2019), we pooled data across food treat-
ments to increase sample sizes. Male size at maturity was
recorded for second-generation laboratory-born guppies.
Observations of Phenotypic Change

We had two sources for observations of phenotypic
change: the common-garden data allowed us to quantify
change between ancestral and introduced populations
when subgroup effects were controlled, and the mark-
recapture data (which were used to fit the animal models)
provided measures of the phenotype in the wild, without
any correction for subgroup effects.
To calculate observations of change in the common-

garden data, we tested for phenotypic divergence between
ancestral and derived populations with Bayesian gener-
alized linear mixed effects models using MCMCglmm
(Hadfield 2010). Full details of the model-fitting process
are given in the supplemental PDF.We analyzed each year
separately, including population (ancestral or derived) as a
fixed effect. We accounted for relatedness among individ-
uals within populations by fitting full-sibling family iden-
tity as a random effect. Sample sizes from the ancestral
(NA) and introduced (NI) populations in each year were
as follows: for 2009, NA p 68 and N I p 45; for 2010,
NA p 52 and N I p 29; and for 2011, NA p 41 and
N I p 40. The difference in the mean trait in the intro-
duced population, relative to the ancestral, is given by the
coefficient for “population.”
For the mark-recapture data, we used MCMCglmm

(Hadfield 2010) to fit a piecewise linear regression of size
at maturity against time (months since introduction),
allowing different slopes in each year of the study. The
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intercept of the model provides the mean initial size at
maturity, and estimates of mean size at maturity can be
obtained for any month during the study.

Estimating Quantitative Genetic Parameters

Using the field data (N p 851) and pedigree, we fit bi-
variate animal models in the form

[z,w] ∼ bX1D1a1D2m1 Ie, ð3Þ
in which size at maturity (z) and lifetime reproductive suc-
cess (fitness; w) are estimated as functions of a matrix
of fixed effects (b) and random effects of breeding value
(a) and maternal identity (m), which account for variation
due to additive genetic and maternal effects, respectively.
Breeding values were estimated on the basis of a covari-
ance matrix structured by pairwise relatedness of all indi-
viduals in the pedigree (Lynch andWalsh 1998). Maternal
identity was included to account for phenotypic similarity
among siblings arising from their shared maternal envi-
ronment. The terms X, D1, and D2 are design matrices
linking trait and fitness observations to the fixed and ran-
dom effects. The residual environmental variation in traits
and fitness is captured in e, which is linked to individual
observations by the incidence matrix (I). Animal models
were fit using MCMCglmm (Hadfield 2010), generating
8,000 samples of the posterior distribution. Full details
and code for the model-fitting process are given in the
supplemental PDF.
By fitting bivariate models, we estimated the variance-

covariance matrices among size at maturity and relative
fitness due to additive genetic (G), maternal environment
(M), and residual environmental (E) effects. For example,
the G matrix is given by

G p
VA(z) covA(z,w)

covA(w, z) VA(w)

� �
, ð4Þ

where VA and covA are the additive genetic variances and
covariances, respectively, of z and w. The same structure
is used for M and E, and the total phenotypic variance-
covariance matrix (P) is given by P p G1M1 E. This
bivariate decomposition allowed us to estimate breeding
values and parameters for the breeder’s equation and the
secondary theorem of selection in the same model. To es-
timate the per-generation response predicted by the breed-
er’s equation (eq. [1]), we multiplied VA(z) by the selection
gradient, whichwe calculated as the phenotypic covariance
between the trait and fitness divided by the total pheno-
typic variance, that is,

bz p
covA(z,w)1 covM(z,w)1 covE(z,w)

VA(z)1 VM(z)1 VE(z)
:

Note that because we used a log-link function to trans-
form absolute lifetime reproductive success, estimates on
the latent scale are converted from absolute to relative life-
time reproductive success (Smouse et al. 1999; Firth et al.
2015; Bonnet and Postma 2018; Bonnet et al. 2019), mean-
ing that our estimates of bz are equivalent to selection
gradients, as described by Lande and Arnold (1983).
For the secondary theorem of selection (eq. [2]), the
per-generation response is given by covA(z,w).

Temporal Dynamics in Breeding Values and Drift

To assess the temporal dynamics of the evolution of size
at maturity, wemodeled the change in estimated breeding
values over time. Using the estimated breeding values
from our animal models, we fit piecewise linear regres-
sions of estimated breeding values by monthly cohort.
We chose this approach to allow the direction and rate
of genetic change (i.e., the slopes of the model) to differ
in each year of the study because our a priori expectation
is of a delay in the onset of evolution of size at maturity
(Reznick et al. 2019). We fit these models across all Bayes-
ian posterior samples to account for uncertainty in esti-
mated breeding values and the correlational structure of
error terms (Hadfield et al. 2010), generating a posterior
distribution of the monthly change in mean breeding
value for each year (i.e., we used a piecewise linear regres-
sionmodification of the approach used in, e.g., Pigeon et al.
2016; Bonnet et al. 2019). To illustrate nonlinear temporal
dynamics of estimated breeding values, we also fit a gen-
eral additive model with a smoothing function to each it-
eration of the Monte Carlo Markov chain used to sample
from the posterior, as described above, using the R pack-
age mgcv (Wood 2017).
A change in breeding valuesmay arise from genetic drift.

We simulated genetic drift by generating 8,000 sets of ran-
dom breeding values, based on the posterior distribution of
VA(z) and the pedigree (Hadfield et al. 2010). We then fit
the piecewise linear regression model described above us-
ing these random breeding values, to simulate the change
in estimated breeding values that could be explained by
genetic drift. We calculated the posterior probability that
changes in mean estimated breeding values (DeBV) were
greater than what would be expected as a result of genetic
drift (DeBVd) as the proportion of posterior samples of
DeBV that were greater than the equivalent posterior
samples of DeBVd (e.g., as in Hadfield et al. 2010).

Including Subgroup Effects as Covariates

Because we wanted to test how subgroup effects can in-
fluence estimation of quantitative genetic parameters, we
ran two types of model. In the first, the only fixed effects
were the population mean values for each response var-
iable. Our predictions for the noncorrected breeder’s
equation, secondary theorem of selection, and change in
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estimated breeding values were derived from thismodel. In
the second, we also included subgroup-specific measures
of environmental variables as fixed effects. This allowed
us to test how the expression of traits and fitness are influ-
enced by known environmental variables and to deter-
mine how correcting phenotypes for subgroup effects in-
fluenced estimation of breeding values and quantitative
genetic parameters.
We defined a subgroup of guppies as those that at-

tained maturity in the same month, allowing us to ac-
count for broad-scale temporal changes in environmental
factors influencing the population. Our subgroup-specific
environmental factors were population density, season
(rainy or dry), and their interaction, which we included
as fixed effects in the animal model. We expect that popu-
lation density and season affect resource availability, which
in turn is likely to influence the means and variances of
traits and fitness. Trinidad has a pronounced rainy season
from June to December, during which flooding scours the
streams of invertebrates and algae, reducing the availabil-
ity of food for guppies. Population density is also likely
to affect resource density, but we expect the relationship
between population density and resource availability to
change as the carrying capacity changes between seasons.
A potential issue with correcting our measure of fit-

ness for population density is that population density is
a function of mean fitness: over a single time step, popu-
lation growth rate and mean absolute fitness are equiva-
lent (Engen et al. 2009). However, our measure of popu-
lation density applies to the month in which male guppies
attained maturity, which is by definition before those indi-
viduals have contributed to population growth with their
own offspring. This decouples individual lifetime repro-
ductive success from the population density measure ap-
plied to that individual.
We tested whether subgroup effects differed between

generations by calculating the mean difference in popula-
tiondensity experienced atmaturity between sires and their
offspring. We did this by fitting a linear model of popula-
tion densitywith relation (offspring or sire) as a fixed effect,
and we included sire-offspring pair as a grouping factor
(i.e., random effect). The intercept of the model is the
mean population density experienced by offspring, and
the slope gives the mean difference in population density
experienced by sires. A negative value of the slope indicates
that sires experienced lower population densities than
their offspring.Wefit thismodel usingMCMCglmm(Had-
field 2010), with default settings and priors.
Covariance between a trait and fitness may arise as a re-

sult of (a) a causal effect of the trait on fitness, (b) selection
on a correlated (unmeasured) trait, and/or (c) environ-
mental covariance between the trait and fitness (Walsh
and Lynch 2018). When the covariance is generated by
b and/or c, the estimate of the causal effect of the trait
on fitness (i.e., the phenotypic selection gradient) will be
biased. Bias can be detected by decomposition of the phe-
notypic selection gradient bz into additive genetic (bA p
covA(z,w)=VA(z)) and environmental (bE p covE(z,w)=
VE(z)) selection gradients; selection is biased when
bA ( bE (Rausher 1992; Stinchcombe et al. 2002; Had-
field 2008). If the focal trait is the sole determinant of var-
iation in fitness (i.e., the true target of selection), then
bz p bA, and predictions from the breeder’s equation
and the secondary theorem of selection will be equivalent
(Morrisey et al. 2010, 2012; Walsh and Lynch 2018). We
assessed the bias in our estimates of selection by calculat-
ing the posterior probabilities that bE 1 bA and bz 1 bA.
By fitting an animal model with subgroup effects as covar-
iates, we estimated bz conditional on the subgroup effects,
thus removing the effect of c due to changes in population
density and season. Remaining biaswould indicate that un-
measured correlated traits (or other environmental factors)
also influence variation in fitness.

Comparing Predictions and Observations

We assume that the difference in trait values between an-
cestral and introduced guppies in the common-garden
experiments reflects the true genetic change. To compare
predictions of change with observations of change in the
field and the common-garden experiments, we multiplied
the per-generation predictions from the breeder’s equation
and the secondary theorem of selection by the mean num-
ber of generations elapsed after 3 years (mean generation
time was 7.90 months; N p 1,457, SD p 3:15; see the
supplemental PDF for details on this calculation). Because
the common-garden data and the field data used to fit the
animalmodels are independent, we could directly calculate
the posterior distribution of the differences between pre-
dictions and observations. For example, the difference be-
tween prediction A and observation B was obtained by
subtracting the posterior distribution of B from that of A.
The resultant distribution of the difference, jA2 Bj, cap-
tures the magnitude and uncertainty of the difference be-
tween estimates. Note that due to a slight skew in posterior
distributions, the mode of jA2 Bjmay not be equal to the
mode of A minus the mode of B. We define a difference
(e.g., jA2 Bj) as statistically clear when the 95% credible
intervals of the distribution do not include zero.

Results

Observations of Phenotypic and Environmental Change

Parameter estimates provided in the following sections are
the modes of the posterior distributions of estimates, with
95% credible intervals given in parentheses or brackets.
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Male size atmaturity asmeasured in the fieldwas highly
variable (fig. 1A). At the onset of the experiment, mean
size at maturity (�z) was 17.66 mm (17.17 to 18.07); �z de-
clined after 2 years (after 1 year: �z p 17:62 mm [17.47
to 17.78]; after 2 years: �z p 16:29 mm [16.18 to 16.43]),
before increasing to slightly less than the initial size in
the third year (after 3 years: �z p 17:41 mm [17.21 to
17.61]). Mean total population density increased each
year following the introduction (fig. 1B; year 1: mean p
0:56 N m22, SD p 0:25 N m22, N p 11; year 2:
meanp 1:69 N m22, SD p 0:38 N m22, N p 12; year 3:
mean p 2:55 N m22, SD p 0:36 N m22, N p 12).
In the common-garden experiments, mean size atmatu-

rity relative to the ancestral population increased slightly
in the first year of the study, then decreased slightly in
the second year, followed by a clear increase in the third
year (i.e., 95% credible intervals of the change do not over-
lap zero; fig. 2). By contrast, mean size at maturity as mea-
sured in the field was clearly lower only in the second year
of the experiment (fig. 2). Observations of change in size
at maturity clearly differed between the field and the com-
mon garden in years 2 and 3 (jDzCG2 2 DzF2j p1:00 mm
[0.36 to 1.70]; jDzCG3 2 DzF3j p 0:70 mm [0.07 to 1.31])
but not in year 1 (jDzCG1 2 DzF1j p 0:34 mm [20.33 to
1.03]; fig. 2).
Environmental Influence on Size at Maturity and Fitness

The environmental subgroup effects that we measured—
population density and season—strongly influenced the
expression of both size at maturity and fitness. The size
at which male guppies attained maturity decreased as
population density increased (bpop p 20:66 mm per N
m22 [20.80 to 20.51]). Guppies tended to mature at
smaller sizes during the rainy season (brainy p 20:72 mm
[21.09 to20.37]). There was an interaction between pop-
ulation density and season, such that the negative effect of
increasing population density on size at maturity was
around 1.7 times greater during the dry season than during
the rainy season (bpop:rainy p 0:33 mm per N m22 [0.15 to
0.51]).
The relative lifetime reproductive success of male gup-

pies was influenced by the environmental conditions they
experienced in the month prior to maturity. Guppies
had lower fitness if they attained maturity at times of in-
creased population density (bpop p 20:59 per N m22

[20.85 to20.33]) and tended to have lower fitness if they
attained maturity during the rainy season (brainy p
20:67 [21.30 to 20.03]). Again, there was an interac-
tion between these factors, meaning that the decrease in
lifetime reproductive success with increasing population
density was strongest during the dry season (bpop:rainy p
0:33 per N m22 [0.01 to 0.65]).
Subgroup effects differed across generations: on av-
erage, the population densities experienced by offspring
were ~40% greater than those experienced by their sires
(mean difference in population density at maturity of sire
relative to that of offspring p 20:59 N m22 [20.63 to
20.55]; fig. S3; figs. S1–S3 are available online).
The Impact of Subgroup Effects on Estimation
of Quantitative Genetic Parameters

We ran two animal models that differed in whether sub-
group effects were included as covariates. In both models,
we detected significant additive genetic variance (VA) for
size at maturity z and fitness w (table 1). Maternal effects
accounted for small but significant proportions of the to-
tal phenotypic variance (VP) in both z and w (table 1). Re-
sidual environmental variance explained the majority of
VP in both size at maturity and relative fitness (table 1).
If relatives experience different subgroup effects, esti-

mation of additive genetic (co)variances and breeding
values may be biased when subgroup effects are not mod-
eled (i.e., the first problem outlined in the introduction).
We found little difference between estimates of VA(z) be-
tween models fit with and without subgroup effects, but
VA(w) was around 50% greater when subgroup effects
were included in the animal model (table 1). Accounting
for subgroup effects had a pronounced effect on the esti-
mation of the additive genetic covariance between size
at maturity and fitness covA(z,w): when subgroup effects
were included, the sign of covA(z,w) changed from nega-
tive to positive (table 1). Accordingly, when subgroup ef-
fects were not modeled, the secondary theorem of selec-
tion predicted a per-generation decrease in mean size at
maturity of 0.09 mm (20.07 to 0.25), but it predicted an
increase of 0.11 mm (20.07 to 0.27) per generation when
subgroup effects were accounted for. Note that while the
credible intervals for both of these estimates span zero,
the former indicates an 85.2% posterior probability that
z will decrease, while the latter indicates an 86.6% poste-
rior probability that z will increase.
When unmodeled subgroup effects vary over time,

changes in estimated breeding values may reflect pheno-
typic rather than genetic change. For both models, the
change in estimated breeding values over the duration
of the study was nonlinear but could be approximated
as linear on an annual basis (fig. 3). Without modeling
subgroup effects, the change in estimated breeding values
resembled the phenotypic change seen in the field data:
there was no clear change in mean breeding value in the
first year (DBV1 p 0:01 mm month21 [0.00 to 0.02]),
a decrease in the second year (DBV2 p 20:03 mm
month21 [20.05 to 20.01]), and an increase in the third
year (DBV3 p 0:05 mm month21 [0.02 to 0.07]; fig. 3A;
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cf. fig. 2). By contrast, when we modeled subgroup effects,
the pattern in the breeding values resembled that in the
common-garden experiments: there was no clear change
in the first 2 years (DBV1 p 0:00 mm month21 [20.01
to 0.01]; DBV2 p 20:01 mm month21 [20.03 to 0.01]),
but there was a clear increase in the third year (DBV3 p
0:03 mm month21 [0.01 to 0.05]; fig. 3B; cf. fig. 2). After
3 years, the posterior probability that the increase in esti-
mated breeding values was greater than what would be
expected as a result of genetic drift was 98.0%.
If subgroup effects are present but not modeled, the
phenotypic selection gradient may capture a noncausal
association between the trait and fitness (i.e., the second
problem outlined in the introduction). Without modeling
subgroup effects, we found that male guppies that ma-
tured at a larger size had higher fitness, indicating positive
phenotypic selection for this trait (bz p 0:16 mm21 [0.05
to 0.28]; fig. S2). For comparison with other studies, the
standardized selection gradient (Kingsolver et al. 2001)
was 0.16 (0.05 to 0.29); the mean-standardized selection
Table 1: Components of variances and covariance from animal models fit with and without subgroup effects as covariates
Trait, parameter
Estimate
Without subgroup effects
 With subgroup effects
Size at maturity (z):

VA
 .36 (.21 to .56)
 .32 (.17 to .47)

VM
 .10 (.05 to .20)
 .09 (.04 to .16)

VE
 .51 (.39 to .66)
 .46 (.35 to .60)

Vz
 1.01 (.91 to 1.13)
 .89 (.81 to .99)
Relative fitness (w):

VA
 .47 (.18 to .84)
 .73 (.36 to 1.31)

VM
 .12 (.04 to .29)
 .10 (.04 to .27)

VE
 1.24 (.90 to 1.63)
 .97 (.60 to 1.38)

Vz
 1.89 (1.61 to 2.28)
 1.92 (1.62 to 2.29)
cov(z, w):

covA(z, w)
 2.09 (2.25 to .08)
 .11 (2.07 to .28)

covE(z, w)
 .20 (.05 to .35)
 2.02 (2.18 to .13)

covz(z, w)
 .17 (.04 to .28)
 .11 (2.01 to .22)
Note: Posterior modes and 95% credible intervals (in parentheses) are provided for estimates of variances (V ) and covariances (cov) relating to size at ma-
turity (z) and relative fitness (w). We used lifetime reproductive success as our measure of fitness. Subscripts A, M, and E denote, respectively, the additive
genetic, maternal environment, and residual environmental components of the total phenotypic variance P. Note that calculations of VP and covz(z,w) were
performed on the posterior distributions of their components; the sum of the modes of components does not necessarily equal the mode of VP. Estimates for
which 95% credible intervals do not overlap zero are given in boldface.
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gradient (Hereford et al. 2004) was 2.69 (0.77 to 4.93).
However, decomposition of bz revealed that the genetic
(bA) and environmental (bE) selection gradients were not
equal, meaning that this estimate of selection was biased
(bA p 20:22 mm21 [20.70 to 0.22]; bE p 0:37 mm21

[0.07 to 0.70]; Pr(bA ! bE) p 95:7%). After correcting
for subgroup effects, the strength of phenotypic selec-
tion was slightly reduced (bzjSG p 0:12 mm21 [20.01 to
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0.25]); although the confidence interval includes zero,
there was a 97.0% posterior probability that selection was
positive. This corrected estimate bzFSG accounted for any
potential noncausal covariance generated by subgroup ef-
fects but was still biased. Phenotypic and genetic selection
gradients were not equal (bAjSG p 0:30 mm21 [20.24 to
0.89]; Pr(bAjSG 1 bzjSG) p 77:7%), implying that unmea-
sured genetically correlated traits (or other unmodeled en-
vironmental factors) caused variation in fitness.
Because there was little difference between models in

our estimates of phenotypic selection and additive genetic
variance, predictions of evolution according to the breed-
er’s equation were similar whether subgroup effects were
accounted for or not. Without accounting for subgroup
effects, the breeder’s equation predicted an increase of
0.06 mm per generation (0.01 to 0.11); when subgroup ef-
fects were modeled, an increase of 0.04 mm per genera-
tion was expected (0.00 to 0.09).

Comparing Predictions with Observations
from the Common Garden

Whenwe did not include subgroup effects as covariates in
the animal model, all three predictions of change under-
estimated the change seen in the common-garden ex-
periments after 3 years (fig. 4, in red). The predicted change
according to the secondary theorem of selection was in the
opposite direction to the change seen in the common-
garden experiments and so underestimated the observed
change by 0.93 mm (0.10 to 1.73); the estimated breeding
value approach underestimated the change by 0.40 mm
(0.04 to 0.78), and the breeder’s equation underestimated
the change by 0.22 mm (20.20 to 0.62), although this last
difference was not statistically clear.
When we accounted for subgroup effects, there were

no statistically clear differences between predictions and
observations in the common garden (jD�zpred 2 D�zobsj;
fig. 4, in blue). For the secondary theorem of selection,
jD�z STS 2 D�zobsj was reduced to 20.02 mm (20.93 to
0.83); for the estimated breeding value approach,
jD�z eBV 2 D�zobsj was reduced to 20.19 mm (20.59 to
0.20). Correcting for subgroup effects decreased the accu-
racy of the breeder’s equation prediction:D�zBE 2 D�zobs in-
creased to 20.34 mm (20.73 to 0.07).

Discussion

Accounting for Environmental Effects
Alters Predictions about Evolution

Without accounting for subgroup effects, our results ap-
peared to be a classic case of evolutionary stasis: we iden-
tified additive genetic variance and positive selection for
size at maturity but actually observed a slight decline in
this trait in the field phenotypic data (fig. 4, in red). Using
the secondary theorem of selection, we then detected
slightly negative selection occurring at the genetic level
(albeit with considerable uncertainty), which agreed with
the limited change seen in the field data (fig. 4, in red).
This type of discrepancy between predictions of change
using the breeder’s equation and the secondary theorem
of selection has previously been attributed to unmeasured
factors upwardly biasing estimates of selection at the phe-
notypic level; that is, if traits that influence fitness are not
measured, the breeder’s equation may predict evolution
when none has occurred (Morrissey et al. 2012). Initial
analysis of the estimated breeding values also indicated
the absence of a clear evolutionary change after 3 years
(fig. 4, in red).
However, results from the common-garden experi-

ments show that mean size at maturity in the experimen-
tal population increased relative to the ancestral popula-
tion: this increase was roughly double that predicted
by the breeder’s equation (fig. 4). Given that the natural
low-predation guppy ecotype matures at larger sizes than
the high-predation ecotype (Reznick and Endler 1982),
this change is consistent with the previously observed
evolutionary transitions between ecotypes. Because envi-
ronmental effects were controlled in the common garden,
this increase must be due to an increase in the mean
breeding value of the population, that is, evolution.
This result begs the question: why did these quantitative

genetic models underestimate or fail to predict the evolu-
tionary change demonstrated by the common-garden ex-
periments? Our results suggest that not accounting for en-
vironmental change over the study period (i.e., subgroup
effects) led us to predict an incorrect evolutionary trajec-
tory. When we modeled subgroup effects (i.e., differences
among subgroups in the population density and season ex-
perienced prior to maturity), predictions of change in size
at maturity based on the secondary theory of selection and
the change in breeding values better matched observations
in the common-garden experiments, although consider-
able uncertainty remained (fig. 4, in blue).
How then did changes in population density and season

bias our estimation of quantitative genetic parameters? In
the introduction we outlined two distinct problems when
such subgroup effects are notmodeled: (i) environmentally
induced dissimilarity among relatives and (ii) noncausal
associations between traits and fitness. In the following
paragraphs, we discuss our results in the context of these
problems.
Regarding the first problem, when we did not model

subgroup effects, we implicitly assumed that relatives ex-
perienced the same environmental conditions. This was
not the case: because our study population was grow-
ing, offspring experienced considerably higher population
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densities than their sires. At high population densities,
guppies matured at smaller sizes and had lower fitness.
By estimating the additive genetic covariancematrix across
the full period of the study—without modeling subgroup
effects—we failed to account for environmentally induced
dissimilarity in phenotypes and fitness among relatives.
Although this had little effect on estimates of VA(z), there
was a change in the sign of covA(z,w) and a change in
the temporal pattern of estimated breeding values when
subgroup effects were modeled. In our first animal model,
the secondary theorem of selection response was biased to-
ward the phenotypic trend: after 3 years, the prediction of a
slight decrease in mean size at maturity matched what we
observed in the fieldmeasurements of this trait (fig. 4). The
change in estimated breeding values also resembled the
phenotypic change over time observed in the field data
(fig. 3A; cf. fig. 1A). However, when we corrected traits
and fitness for subgroup effects, predictions of evolution
from both of these approaches more closely matched the
changes seen in the common-garden experiments, that is,
the genetic change (figs. 3B, 4).
Regarding the second problem, accounting for sub-

group effects had little effect on estimates of the pheno-
typic selection gradient, but the remaining mismatch be-
tween the genetic and environmental components of the
gradient indicated that correlated traits that influence fit-
ness were missing from the analysis. However, by cor-
recting for subgroup effects, we showed that size at matu-
rity had a (partial) causal effect on fitness. The omission
of genetically correlated traits influencing fitness from
the analyses may explain the underestimation of evolu-
tionary change predicted by the breeder’s equation from
both animal models (fig. 4). This is supported by the un-
derestimation we observed in the change in breeding
values when subgroup effects were modeled (fig. 4); esti-
mation of breeding values is also sensitive to the omission
of genetically correlated traits.
Both statistical problems that we have discussed are po-

tential examples of the Yule-Simpson effect—a change in
the magnitude or sign of a covariance conditional on a
third variable (Yule 1903; Simpson 1951). This is a well-
known problem in regression analyses, whereby covari-
ances estimated across aggregated data capture noncausal
associations when the data are structured by a third con-
founding variable (Blyth 1972; Pearl 2014). With regard
to estimating phenotypic selection gradients (the second
problem), this issue is partially solved by the development
of the multivariate breeder’s equation (Lande and Arnold
1983). This solution is only partial because fitness, which
is convenient to think of as a trait in quantitative genetic
analyses, is really an emergent property of the interaction
between the phenotype and the environment (Coulson
et al. 2006). As such, fitness is conditional not only on
the traits that comprise an individual’s phenotype but
also on the environmental conditions it experiences.
The strength of the animal model—that it makes use of

relatedness data across the entire population—alsomakes
it prone to the Yule-Simpson effect when relatives expe-
rience different environmental conditions. In our study,
Yule-Simpson effects driven by two distinct unmodeled
factors—differences among relatives in environmental
conditions experienced and unmeasured traits influenc-
ing fitness—reduced our ability to accurately quantify
evolution. The secondary theorem of selection was sensi-
tive to the former, the breeder’s equation was sensitive to
the latter, and the change in estimated breeding values
was sensitive to both. Our results demonstrate that such
effects, if unaccounted, can lead to incorrect inferences
about both the magnitude and the direction of evolution-
ary change.
Ecological Feedback Drives Cryptic Evolution

Our results support the hypothesis that the life histories of
guppies evolve in response to increased population den-
sity rather than as a direct response to reduced predation
risk (Reznick et al. 2019). If selection for increased size at
maturity was due to release from predation pressure, se-
lection should be strongest at the onset of the experiment
(Reznick et al. 2019). Instead, several lines of evidence
point toward size at maturity evolving in response to in-
creases in population density: (i) the mean estimated breed-
ing value for size at maturity only began to increase in the
third year of the study, when population density was
highest (fig. 3B); (ii) the monthly phenotypic trend shows
a strong decline in size at maturity with increasing popu-
lation density in the second year but an increase in size at
maturity in the third year despite higher average popula-
tion densities than in the preceding years (fig. 1); and
(iii) a clear increase in size at maturity was absent in the
common-garden experiments until the third year of the
study (fig. 2).
Comparing change in size at maturity between the field

and common-garden data revealed cryptic evolution of
this trait: an increase in the genetic component of the
phenotype concealed by a decrease in the environmen-
tal component (Cooke et al. 1990). Under the additive
genotype-phenotype map (P p G1 E), increasing the
breeding value G will increase the trait value P, provided
that the environmental component E is constant (as in the
common-garden experiments). In the field data, a nega-
tive value of E masked the increase in G, such that size
at maturity after 3 years did not differ from that at the on-
set of the experiment. The effect of the increase in G can
be seen in figure 1A: in the third year, the phenotypic
value began to increase, despite continued increases in
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population density (and by extension an increasingly neg-
ative value of E).
The population appeared to reach carrying capacity in

the third year and then began to decline. This provided an
opportunity for a comparison: population densities are
approximately equal at months 23–24 and months 35–
36 (fig. 1B), yet there is an increase in mean size at matu-
rity of around 1 mm between these time points. This in-
crease is roughly equivalent to the increase in G in the
common-garden data over the same period (0.78 mm).
The increase in population density led to a decrease in
mean size at maturity due to changes in E, but it also
drove positive selection, resulting in an increase in the
breeding value G of this trait.
In biological terms, as the population approached car-

rying capacity, per capita resource availability presum-
ably declined, which had two conflicting effects on the
population’s mean phenotype. At the genetic level, de-
creased resource availability drove selection for increased
size at maturity. This was likely because larger size in gen-
eral is associated with higher competitive ability under
resource limitation in guppies (Potter et al. 2019). This
genetic change was only apparent in the common-garden
experiments, where resource levels were constant. At
the same time, decreased per capita resource availability
likely had a direct effect that decreased size at maturity.
This is consistent with experimental results on resource-
dependent plasticity in guppies (Reznick 1990). As such,
at the phenotypic level wild guppies could not attain the
larger size that their breeding values would predict be-
cause there were insufficient resources to do so. Thus,
our study provides a novel example of ecological feedback
driving cryptic evolution.
Generality and Limitations of the Study

Our results, like most quantitative genetic studies of nat-
ural systems, are based on a single population. This makes
it difficult to assess the generality of our findings. How-
ever, our study population is one of four experimental
introductions: we do know that common-garden studies
indicated a similar evolutionary change driven by higher
densities in the other three experimental populations
(Reznick et al. 2019). Barriers to dispersal, which bound
the introduced populations, limit the potential for evolu-
tion due to gene flow, and our analysis of estimated breed-
ing values indicate that the observed change was greater
than that expected as a result of genetic drift. As such,
our results strongly suggest that the evolution of size at
maturity is an adaptive response to resource limitation. It
is possible that some component of the change seen in
the common-garden experiments is due to a genotype-
by-environment interaction: differences in environmen-
tal conditions between the laboratory and field may exag-
gerate or minimize genetic differences between ancestral
and introduced guppies. However, given the absence of
any interaction between food level and population in the
common-garden experiments in any of the years of study,
the simplest explanation is an increase in mean breeding
value for size at maturity occurring between years 2 and
3 of the experiment (as in fig. 3B).
Systematic changes in resource availability generating

subgroup effects are likely widespread and may emerge
from concurrent ecological and evolutionary dynamics.
However, our experimental introduction replicated a colo-
nization event, and our focal population of guppies was
not at equilibrium. In these first 3 years, we captured the
beginning of the transition from one evolutionary opti-
mum to another, that is, from the high-predation ecotype
to the low-predation ecotype. Population density increased
almost 30-fold in less than 3 years (fig. 1B). Such large
changes in population size are atypical of wild pedigreed
populations. As such, the temporal trends we saw may
have been more pronounced than in other systems. How-
ever, where systematic environmental change occurs—for
example, in studies of evolution in response to climate
change—we argue that accounting for subgroup effects
will improve predictions of evolutionary trajectories.
One problem with our study system is that it is not fea-

sible to perform mark-recapture on juvenile guppies
smaller than 14 mm in length. This means that we have
no record of individuals that died before we had an op-
portunity to sample them. The survival rate of juvenile
guppies to a size of 14 mm in natural low-predation-type
streams is estimated at ~20% (Reznick et al. 1996), mean-
ing that we have a large “invisible fraction” (Grafen 1988).
This is further compounded by missing data from indi-
viduals that were initially sampled but died before at-
taining maturity. This is problematic because individuals
that did not survive to maturity are not included in the
analysis (Hadfield 2008). If, for example, viability selec-
tion is operating on juvenile size and juvenile size is genet-
ically correlated with size at maturity, then we will have
underestimated the strength of (indirect) selection for size
at maturity. This problem is offset to some extent because
we also likely underestimated the change in size atmaturity
in the common-garden experiments relative to that which
would occur in the field. In the common-garden experi-
ment, there was no invisible fraction lost between sampling
(at ~12 mm) and maturity. This means that smaller indi-
viduals that might have been lost to viability selection in
the wild survived to maturity (at presumably smaller sizes)
in the common-garden experiment.
Estimation of genetic (co)variances is notoriously data

hungry, and subsequently there was considerable un-
certainty around some of our predictions. In particular,
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predictions based on the secondary theorem of selection
had very wide credible intervals spanning zero. Can we
then justify saying that predictions improved when envi-
ronmental effects were accounted for? We would argue
that the accuracy of predictions improved because the dif-
ference between predictions and observations decreased
when environmental effects were accounted for. Our pre-
dictions, as is typical of such studies, lacked precision.
However, by accounting for subgroup effects, predictions
based on the secondary theorem of selection and the
change in estimated breeding values more closely matched
observations in the common garden and less closely
matched the phenotypic trend in the field data.
Implications for Predicting Evolution
in Changing Environments

Unaccounted environmental effects are known to bias
quantitative genetic predictions of evolution (Lande and
Arnold 1983; Rausher 1992; Lynch andWalsh 1998; Postma
2006). We were able to test for bias caused by the changing
environment by comparing sets of different predictions for a
wild population to observations in a common-garden exper-
iment, where environmental effects were controlled. How
should researchers tackle the problem of environmental
change in the absence of common-garden data? Our results
show that when relatives experience distinct environmental
conditions, these environmental variables should be in-
cluded as fixed effects in the animal model. This reduces
Yule-Simpson effects by accounting for environmentally
caused differences in the expression of traits and fitness
prior to estimating breeding values and the additive genetic
variance-covariance matrix.
In our study system, we expected selection for the low-

predation guppy ecotype to be driven by increased popu-
lation densities and decreased resource availability (Bas-
sar et al. 2013; Reznick et al. 2019). Given the many
factors that may influence phenotypes and fitness in wild
populations, selecting an appropriate environmental var-
iable to include in quantitative genetic analyses may be
challenging. One proposed solution to this problem is to
simply account for all annual environmental differences
by including year as a fixed effect in the animal model
(Postma 2006;Walsh and Lynch 2018). However, this con-
founds environmental change with any true genetic change
that occurs within a year, reducing the power to detect
evolution (Postma 2006; Walsh and Lynch 2018). This
is particularly problematic for organisms with short gen-
eration times. We suggest that researchers carefully con-
sider which environmental variables might cause dissim-
ilarity in phenotype and fitness among relatives and to
include those factors as covariates when estimating quan-
titative genetic parameters.
A general implication of our findings is that environ-
mental drivers of selection can inhibit our ability to detect
the evolutionary change they cause. Not accounting for
environmental drivers of selection in quantitative genetic
models may result in false-negative results—that is, the
failure to detect actual evolutionary change, as in this
study. This is most likely when environmentally induced
phenotypic plasticity and selection act in opposing di-
rections. Because evolutionary change is fastest when it
is cryptic (Coulson et al. 2019), failure to detect instances
of cryptic evolution will result in underestimation of mean
rates of evolution in wild populations. Not accounting for
changing environmental influences on traits and fitness
reduces the ability of quantitative genetic models to accu-
rately detect evolutionary change.
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