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Abstract

Cichlid fishes’ famous diversity in body coloration is accompanied by a highly diverse and complex 

visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they 

express only a subset of these during their ontogeny, accounting for their astonishing interspecific 

variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural 

selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual 

selection might have contributed to the observed visual diversity, and sexual dimorphism in 

coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-

specific opsin expression of several cichlids from Africa and the Neotropics and collected and 

integrated datasets on sex-specific body coloration, species-specific visual sensitivities, lens 

transmission and habitat light properties for some of them. We comparatively analyzed this wide 

range of molecular and ecological data, illustrating how integrative approaches can address specific 

questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in 

particular. We found that both sexes expressed opsins at the same levels - even in sexually dimorphic 

cichlid species – which argues against coevolution of sexual dichromatism and differences in sex-

specific visual sensitivity. Rather, a combination of environmental light properties and body 

coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although 

cichlids are particularly colorful and diverse and often sexually dimorphic, it would appear that 

natural rather than sexual selection is a more powerful force driving visual diversity in this hyper-

diverse lineage.
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Introduction

Cichlid fishes are evolutionary model organisms for studying the process of speciation, mostly due to 

their exceptionally high diversity and ultra-fast rates of phenotypic divergence (Meyer et al., 1990; 

Kocher, 2004; Genner & Turner, 2005; Henning & Meyer, 2014). Cichlids famously vary in 

morphological traits, such as body coloration and their trophic morphology, but also in behavioral 

traits, such as social systems and parental care (Meyer, 1993; Seehausen, 1997; Stiassny & Meyer, 

1999; Wisenden et al., 2015). This remarkable diversity is thought to be the result of both natural 

and sexual selection (Fryer & Iles, 1972; Kocher, 2004; Seehausen, 2006; Wagner et al., 2012; Selz et 

al., 2016). While natural selection is widely believed to be the driving force behind the evolution of a 

wide range of foraging modes and associated morphologies (Keenleyside, 1991), sexual selection 

pushes the evolution of a plethora of body colorations (Deutsch, 1997; Allender et al., 2003). This 

color diversity is found across species, but also at the intraspecific level, for example as sexual 

dimorphism: males show different and usually much brighter colors and higher color intensities than 

females (Fryer & Iles, 1972; Seehausen et al., 1999). As males typically exhibit more conspicuous 

body coloration patterns, female preference was suggested to be the main driver of sexual 

dimorphism in cichlid fishes’ body colorations (Seehausen et al., 1997).

A trait that is also particularly variable among cichlids is their visual system (Carleton, 2009; 

Carleton et al., 2016), and this lineage has become a model system for the study of visual ecology and 

evolution. Cichlids have an unusually high number of opsin genes (seven cone opsins and one rod 

opsin) and also opsin expression patterns were found to be especially variable (different 

combination of typically three out of the seven cone opsins are expressed at a given time; Carleton, 

2009; Carleton et al., 2016). Previous research suggested that the diversity in visual sensitivities, in 

large part due to variation in opsin gene expression patterns, reflects the diversity of habitats and 

thus light regimes cichlids inhabit (Maan et al., 2006; Seehausen et al., 2008; Smith et al., 2012). Light 

generally attenuates when transmitted through water and thus habitats are getting darker with 

increasing depth. In addition, clear water absorbs light of long wavelengths (‘red’ light) and very 

short wavelengths (‘UV’ light) particularly fast (Lythgoe, 1988; Anthes et al., 2016). Thus, with 

increasing depth the ambient light becomes spectrally narrower and short to middle-long light 

wavelengths dominate (blue-green light). Furthermore, algae and particles suspended in the water 

change these transmission properties (Cronin et al., 2014). Finally, natural selection has been implied 

to affect the evolution of cichlid visual sensitivities by other factors besides the depths at which they 

live, such as the trophic niche a fish occupies (Hofmann et al., 2009; Carleton et al., 2016).

Abiotic factors, such as water depth and clarity, as well as other environmental properties that 

shape visual sensitivities can, however, also indirectly affect the evolution of body coloration through A
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sensory biases (i.e. sensory drive; Fig. 1 A; Boughman, 2002; Ryan & Cummings, 2013). The sensory 

bias model assumes that signals of the sender evolve to be transmitted efficiently in the species’ 

respective habitat and for being detected easily by the intended receiver due to sensory biases, such 

as environmentally-tuned sensitivities of the receiver (i.e. the mating partner) (Endler, 1992; Endler 

& Basolo, 1998; Boughman, 2002). This mechanism is assumed to have contributed to species 

divergence in Lake Victoria’s Pundamilia cichlids (Seehausen et al., 2008). Populations of the 

common ancestor of two Pundamilia species are thought to have experienced disruptive selection on 

visual sensitivity caused by different light environments at different water depths, and in turn visual 

adaptation to these divergent light environments might have affected the evolution of nuptial 

coloration through sensory drive (Carleton et al., 2005; Seehausen et al., 2008). Sensory biases may 

also result from innate preferences for environmental stimuli associated with fitness benefits. 

Selection is then predicted to further strengthen such preferences by improving visual sensitivity for 

the beneficial signal (Fig. 1 B). For example, the evolution of conspicuous color patterns in 

Trinidadian guppies has been demonstrated to be driven by a sensory bias towards orange colors 

that initially facilitated the finding of prey (Rodd et al., 2002).

In addition to natural selection, sexual selection can potentially be a force affecting the 

evolution of vision (Arikawa et al., 2005; Briscoe et al., 2010; Bloch, 2015), although less evidence 

supports a role of sexual compared to natural selection in driving the evolution of visual sensitivities 

(Kelber & Osorio, 2010). This can happen if sensory biases are projected on conspecifics, such as 

mates. Then, sexual selection could become the primary driver, predicted to exaggerate the 

preference for the signal and, potentially, simultaneously imposing selection on the linked visual 

sensitivity to improving mate evaluation through run-away processes. A co-evolutionary feedback-

loop through mate choice can drive the evolution of increasingly exaggerated signals, which in turn 

might result in further evolution of preference and sensitivity for them (Fisher, 1930; Bloch, 2015). 

This mechanism might underlie some of the extreme diversity in body coloration in cichlid fishes 

(Fig. 1 C). Finally, dimorphism in any of the involved traits (e.g. signal, signal preference, and 

sensitivity for the signal) could evolve if such traits become coupled with sex, particularly when there 

is a division into a choosy (typically females) and a chosen (typically males) sex (Fig. 1 D; e.g., Kelber 

& Osorio, 2010; Bloch, 2015). Considering the diversity of body coloration and visual systems in 

cichlids, it is plausible that run-away selection has contributed to divergent visual sensitivities 

between sexes (Sabbah et al., 2010).

Here, we investigate the relative strength of natural and sexual selection on cichlid opsin 

expression by integrating species-specific photic environmental data, spectral body coloration 

measurements and opsin expression data from both sexes in sexually dimorphic and monomorphic A
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species in terms of body coloration. We discuss whether sexual dimorphism in coloration is 

associated with differences in opsin expression among sexes, we evaluate the relative importance of 

the environmental light versus mate body coloration on cichlid visual properties, and we investigate 

whether sexually dimorphic species in terms of coloration use different opsin arrangements than 

sexually monomorphic species.

Materials and Methods

Species selection and maintenance

The studied cichlid species included representatives of African (i.e., Pundamilia nyererei, 

Labidochromis caeruleus, Pseudotropheus lombardoi, Melanochromis auratus and M. johannii) and 

Neotropical cichlid radiations (Hypsophrys nematopus, H. nicaraguensis, Apistogramma agassizii, A. 

cacatuoides, A. ortegai, details on species habitat in Table 1; Fig. S1). The selected species exhibit 

varying levels of sexual dimorphism in body coloration and/or brightness (Table 1). Furthermore, 

chosen cichlids occur in different habitats and different water depths (Table 1). Fish were either 

captivity-bred and raised under artificial light until sexual maturity, or wild caught (only 

Apistogramma species, but 7 of 12 A. ortegai individuals were laboratory-bred). All individuals were 

kept for at least two weeks under artificial light in the laboratory (Fig. S2). Two weeks were deemed 

a sufficiently long time period for plastic changes in adult visual system to be concluded (Nandamuri 

et al., 2017; Härer et al., 2019), as well as for male fish to establish territories in the acclimatization 

tanks and thus to develop characteristic nuptial colorations. Fish were euthanized by an overdose of 

tricaine methanesulfonate (MS222) in the early afternoon (from 14:00 to 16:00). For each fish, both 

eyes were dissected and the lenses extracted. The lens-less eyes were transferred to RNAlater 

(Sigma) and stored at -20°C or directly processed (see below), whereas the lens was transferred to 

PBS for short-term storage (<1h). Fish were euthanized under University of Konstanz permit 

(T16/13TFA).

Determination of opsin expression using quantitative PCR

Cichlids have a total of seven unique cone opsin genes, each with a characteristic sensitivity peak 

(Carleton, 2009). Nonetheless, only three of those opsins are usually expressed in cichlids at any 

time, resulting in a functionally trichromatic visual system (Levine & MacNichol, 1979; Fernald, 1981, 

1984; Carleton & Kocher, 2001; Hofmann et al., 2009). To determine which subset of opsins were 

expressed differentially by sex, RNA was extracted from between 12 to 17 individuals per species 

(sample size per sex per species in Fig. 2) whole lens-less eyes using an RNeasyMini Kit (QIAGEN), A
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including the optional on column gDNA digestion step, and concentration and purity were 

determined using a Colibri microvolume spectrometer (Titertek Berthold). Equal amounts of 

extracted RNA (750 ng) were used for first-strand cDNA synthesis (GoScript Reverse Transcription 

System, Promega). Primer pairs for all opsin genes were designed using NCBI Primer-BLAST (Ye et 

al., 2012) and reference sequences retrieved from GenBank (rh2a primers were designed to amplify 

both rh2aα and rh2aβ; details, primer sequences and reference taxa for primer design, see 

Supplementary Table S1). Targeted regions always included intronic regions (except for rh1, as this 

gene has no introns) to avoid unintended amplification of the gDNA sequence. Primer pairs were 

tested for each species separately and an efficiency value was calculated for each opsin and species 

combination (following Carleton & Kocher, 2001). Quantitative PCR (qPCR) conditions were adjusted 

for each primer pair, resulting in efficiency values between 0.79 and 1.1, with those genes that 

showed considerable expression typically with primer efficiencies closest to 1 (Supplementary Table 

S2). qPCR was performed on a CFX96 Real-Time System (Bio-Rad; using a GoTaq qPCR mix, 

Promega). Melt curves were performed after each qPCR run, which confirmed that all amplified 

product was of a similar size, suggesting that there was no unspecific amplification. To test for gDNA 

contamination in our RNA due to a potentially insufficient DNA digestion during RNA extraction, 

noRT-qPCRs were run for 20 samples using rh1 primers, as these do not cover an intronic region and 

are expected to amplify gDNA. The mean Cq differences between cDNA and RNA samples was 15, 

while the lowest, i.e. the “worst”, was 6.6 (i.e. ~1% of signal was due to gDNA). For the opsin genes 

that were not expressed at a significant level, no reliable efficiency could be determined (we assume 

an efficiency of 1.0 for downstream analyses; Supplementary Table S2), which is in accordance with 

previously published data (e.g. Escobar-Camacho et al., 2016).

Opsin gene expression was then calculated following Fuller et al. (2004), Carleton and Kocher 

(2001) and Yourick et al. (2019):

 ;𝑇𝑖,𝑗 = 1/((1 + 𝐸𝑗)𝐶𝑡𝑖,𝑗)

where Ti,j is the absolute expression value of the opsin gene j from individual i. Ej is the species-

specific efficiency of j’s primer and Cti,j is the critical cycle number obtained from individual i using 

opsin primer j. For all six cone opsin primer pairs, individual relative expression values were then 

calculated by dividing each absolute cone opsin expression value by the sum of all cone opsin 

expression values. Complementary, opsin gene expression standardization for single-cone opsins and 

double-cone opsins is provided but not considered in subsequent analyses (Fig. S3) as a single visual 

sensitivity curve per species was computed across cone types (see e.g. Rennison et al., 2016). For the 

rod opsin rhodopsin (rh1), its absolute expression was divided by the sum of all opsin absolute A
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expression values. Thus, rh1 expression was normalized to the level of overall opsin expression. We 

used this approach rather than normalizing by housekeeping genes, as we were not interested in 

daily variation in rh1 expression (we sampled all fish between 14:00 and 16:00 hours, see above), 

but rather in the differences between sexes in expression patterns for which relative-to-opsin-

expression appears to be a better approach (although not tested for rh1; Yourick et al., 2019). For 

each opsin separately, t-tests (for unequal variances) were used to test for differences in opsin 

expression between sexes. P-values were species-wise adjusted for multiple testing using the false-

discovery-rate correction (Table S3). For A. ortegai, potential differences between wild-caught and 

laboratory-raised individuals were investigated using a Scheirer-Ray-Hare test (using opsin gene, 

rearing background and their interaction as independent variables) on relative opsin expression 

values (Table S4), followed by opsin-wise two-factorial Scheirer-Ray-Hare test (using rearing 

background, sex and their interaction as independent variables) to test if rearing background 

affected opsin expression in sexes differently (Table S5).

Modeling African cichlids’ visual sensitivity

To explore factors influencing cichlid vision, the properties of each species’ visual apparatus (e.g. 

variations in lens transmittance and visual pigment sensitivity curves) were measured in more detail, 

as outlined below. In addition, the reflectance spectrum of each sex of each species in their respective 

habitat was modeled (see Fig. 3 for an overview of the analysis pipeline). While we report the lens 

transmission for all investigated species, the remaining part of the analysis was restricted to the 

African cichlids because we found no reliable information on the visual environment of the studied 

South American species. Only few studies took those measurements (e.g., Escobar ‐ Camacho et al., 

2016; Torres-Dowdall et al., 2017; Escobar-Camacho et al., 2019a), but those are restricted to specific 

habitats. Additionally, due to dramatic changes in melanophores during anesthesia, South American 

cichlids' reflectance measurements were unreliable (see below). 

Optical filters, such as the lens, can modify the incoming light, e.g., by filtering out potentially 

harmful light of very short wavelengths (UV-light; Douglas & Marshall, 1999) and therefore affect 

overall visual sensitivity. Light transmittance of cichlid lenses was determined by measuring the 

lenses’ relative light transmittance of a given broad-range light. Firstly, the spectrum of the used 

Ocean Optics PX-2 pulsed xenon light source was determined by pointing the light source on a 

Spectralon diffuse white standard (Fig. S4) and measuring the reflected light spectrum, which 

spanned a wavelength range of ~220-800nm, with an Ocean Optics USB2000-UV-VIS-ES 

photospectrometer (operated with Ocean Optics OceanView v.1.6.7 software). Relative light 

transmittance of each lens was determined within 1h after dissection. For this purpose, the lens was 

mounted between the light source and the measurement probe. Black tracing paper showing a A
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circular whole with a diameter smaller than the lens’ diameter was positioned directly behind the 

lens to guarantee that all measured light had passed through the lens. All measurements were 

conducted in a dark room with no other light source than the PX-2. Photon count was measured in 

0.4nm wavelength bins (initially from 320-800nm). Per lens spectrum, the absolute transmittance 

was converted to relative transmittance by dividing its photon count per wavelength bin by the 

photon count of the respective bin of the light source (Fig. S5):

 ;𝑡𝑟𝑒𝑙,  𝜆 =
𝑡𝑎𝑏𝑠, 𝜆

𝐼𝑤ℎ𝑖𝑡𝑒𝐿𝑖𝑔ℎ𝑡, 𝜆

where trel,λ is the relative transmittance for a given wavelength λ, tabs,λ is the absolute transmittance 

intensity measurement at λ, and IwhiteLight λ is the absolute intensity measurement of the light source at 

λ.

Also, we calculated the commonly used T50 values (the wavelength below which light of short 

wavelength is absorbed by the lens) using sigmoid fit curves fitted to each species’ average lens 

transmission curve (Table S6; Fig. S5; Hofmann et al., 2010a). Firstly, an average relative lens 

transmittance spectrum was computed for each species. To do so, all lens transmittance spectra had 

to be standardized for each species towards each other. This was achieved by approximating the 

integral of each transmittance spectrum from 300-700nm by computing the sum of all transmittance 

values per wavelength from 300-700nm, and the spectrum was then divided by this sum:

 ;𝑡𝑠𝑡.𝑟𝑒𝑙,  𝜆 =
𝑡𝑟𝑒𝑙, 𝜆

∑𝑡𝑟𝑒𝑙

where tst.rel,λ is the standardized relative transmittance for a given wavelength λ, trel,λ is the relative 

reflectance intensity at the wavelength λ, and trel is the sum of the relative transmittance spectrum 

across all wavelengths.

After this procedure, per wavelength step, the mean of all transmittance spectra was 

calculated, which produced one average transmittance spectrum per species. Additionally, the 

standard error per wavelength was calculated for plotting (see Fig S2). For each of these mean 

spectra, we used R’s nonlinear least squares function (nls()) to approximate the parameters of a 

sigmoid fit curve: nls(y_transmittance ~ a / ( 1 + exp( -b * (x_wavelengths - c ))), start=list(a=0.8, b=0.5, 

c=250)). The T-50 value corresponds to the resulting “c” parameter in aforementioned equation.

To model visual sensitivity in more detail, the visual pigment sensitivity peaks (λmax values) for 

each cone opsin were obtained from the literature (the “default” set; Table S6). In some cases, these 

default λmax were adjusted when species-specific λmax or those of closely related species were 

available (see Table S6 for details and references, and lens T50 values). Standardized cone opsin 

absorption curves were calculated according to Govardovskii et al. (2000) considering the species-

specific λmax of each opsin. Subsequently, these were weighted according to the respective opsins’ A
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relative expression levels, as done in Hofmann et al. (2009). Retina sensitivity curves were then 

calculated by adding up the integrals of all cone opsin absorption curves (as was done in Rennison et 

al. (2016)). Finally, the sensitivity curves of each species were corrected for the species-specific long-

pass filter effects of the lens by multiplying the sensitivity curves with the average transmission 

curve per species (Fig. S5 and Fig. S6). Thus, a lens-corrected weighted retina sensitivity curve was 

estimated for each species. To facilitate the comparison of the spectral widths of these lens-corrected 

weighted retina sensitivity curves, wavelengths that divide the integral of these visual sensitivity 

curves in 25% sections were calculated (λP25, λP50 & λP75) and the wavelength difference between 

the 25% and 75% wavelengths were calculated (Δλ= λP75-λP25) to reflect the widths of the visual 

sensitivity curves (Table 2; as in McFarland & Munz, 1975; Sabbah et al., 2011).

Modeling African cichlids’ body reflectance in their natural habitat

For the five African cichlid species, the reflective properties of the fish’s bodies were measured at five 

to six spots on the fish, corresponding to cheek, back, belly, anal fin (anterior part), egg spots (if 

applicable) and an optional species-specific additional spot, representing a particular conspicuous or 

colorful patch (Fig. S7 for more details). Fish euthanized with MS222 tended to expand their 

melanophores, which led to generally darker fish compared to their coloration when alive. 

Melanophores typically mostly alter the brightness of fish and have a more limited effect on the 

relative spectral composition of reflected light as melanin itself does not have an absorption peak in 

the visible light wavelength range (Zonios et al., 2008). Nonetheless, melanophores can cover other 

pigment cells with melanin and thus indirectly affect body color in addition to brightness - effectively 

homogenizing the spectral composition of the body color (Nilsson Sköld et al., 2013; Wucherer & 

Michiels, 2014). In studied African cichlids, we did not observe pronounced color changes by the 

naked eye due to anesthesia, however, we did observe such changes in the South American 

Apistogramma species, rendering the measurements on this species too unreliable. For African 

cichlids, the PX-2 pulsed xenon lamp was used to illuminate each measured spot via a bifurcated 

fiber with a single probe that also allowed us to also measure the spot at the same time and angle 

using the aforementioned spectrometer. Before each measurement, the respective spot was 

superficially dried with a paper tissue and then the probe was held at a 40-60° angle directly onto the 

skin to measure the integrated reflective properties of an approximately 0.5cm2 spot. Non-measured 

areas were covered with black tracing paper to minimize noise due to scattered light. Nonetheless, 

particularly small structures (e.g. egg spots) may also contain some noise from unintentionally 

illuminated and measured surrounding skin. Comparisons to measurements conducted within water 

submerged fish and probe showed no relevant differences from the above-surface water 

measurements. Reflectance measurements were recorded from 300nm to 700nm. The relative A
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reflectance spectrum per fish and spot (Fig. S8) was calculated by dividing the absolute spectrum by 

the illumination spectrum, which was determined using a Spectralon diffuse white standard, and 

subsequent standardization:

 ;𝐼𝑟𝑒𝑙.𝑟𝑒𝑓,  𝜆 =
𝐼𝑎𝑏𝑠.𝑟𝑒𝑓, 𝜆

𝐼𝑤ℎ𝑖𝑡𝑒𝐿𝑖𝑔ℎ𝑡, 𝜆

where Irel.ref,λ is the relative reflectance intensity for a given wavelength λ, Iabs.ref,λ is the absolute 

reflectance intensity measurement at λ, and IwhiteLight λ is the absolute intensity measurement of the 

light source at λ.

To obtain estimates of species- and sex-specific body reflectance spectra of cichlids in their 

natural habitat, body light reflectance spectra had to be integrated with natural illuminance at their 

habitat. Due to random noise (e.g. variable melanophore spread levels of sampled fish and somewhat 

variable tissue-probe-distances during measurements) raw relative reflectance measurements are 

not necessarily comparable across individuals and spots. To allow comparisons of spectral peaks, 

relative reflectance spectra heights were standardized to have equal integrals between sexes’ 

average spectra, i.e., the sum off all reflectance values per wavelength step were summed up per 

spectrum and the whole spectrum was divided by this value:

 ;𝐼𝑠𝑡.𝑟𝑒𝑙.𝑟𝑒𝑓,  𝜆 =
𝐼𝑟𝑒𝑙.𝑟𝑒𝑓, 𝜆

∑𝐼𝑟𝑒𝑙.𝑟𝑒𝑓

where Ist.rel.ref,λ is the standadized relative reflectance intensity for a given wavelength λ, Irel.ref,λ is the 

relative reflectance intensity at the wavelength λ, and  is the sum of intensities across the ∑𝐼𝑟𝑒𝑙.𝑟𝑒𝑓

whole relative reflectance spectrum. When multiple reflectance measurements per spot were taken, 

an average spectrum was produced per sex and species.

Thus, spectral peaks and valleys of reflectance are readily recognizable in both sexes. However, 

all information on luminance (i.e. spectra heights) was therefore lost. Object luminance can affect an 

individual’s color discrimination abilities, particularly when object luminance is relatively low and 

background luminance is high, and we note that our approach unfortunately cannot consider effect 

(Lythgoe, 1988). 

The habitat type for each species was determined based on previously published literature 

(Table 1 for details and references). To model the particular habitat ambient light environment, 

firstly the light attenuation properties of the water of the respective habitat were assigned to one of 

two water-types: ‘Lake Malawi rock habitat’ (very clear water; for all Malawi cichlids) and ‘Lake 

Victoria Makobe’ (murky water, for P. nyererei). We obtained the relative light attenuation spectrum 

per meter depth for the Lake Malawi habitats from Sabbah et al., 2011, which was only possible for 

down-welling light. Habitat light was then calculated by multiplying a sun light spectrum (sunlight 

spectrum obtained from http://rredc.nrel.gov/solar/spectra/am1.5/) with the habitat’s A
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transmission (which is one minus attenuation) spectrum to the power of the respective habitat’s 

depth:

 ; 𝐻𝐿𝑑𝑒𝑝, 𝜆 = 𝑆𝐿 𝜆 ×  (1 ― 𝐴𝜆)𝑑𝑒𝑝

where HLdep,λ is the habitat light intensity at a given depth dep (in meter) and wavelength λ, SLλ is the 

sun light intensity at wavelength λ, and Aλ is the attenuation coefficient at wavelength λ. Obtained 

spectra were then standardized as outlined above for reflectance spectra. The Lake Victoria habitat 

relative light absorption spectra per meter depth were calculated using data from Maan et al. (2010) 

(Fig. S9) and processed the same. Again, λP25, λP50, λP75 and Δλ were calculated (Table 2). 

Species reflectance patterns in bright sunlight above water (Fig. S10) and in their natural 

habitats (Fig. S11) were then modeled. In aquatic habitats, fish in the water column are, however, 

illuminated not only by down-welling light, but also by side-welling and up-welling light. Down-

welling light has the highest intensity among these and illuminates particularly surfaces oriented 

upwards (typically the back of the individual). Surfaces averted to the water surface are illuminated 

by side- or up-welling light. The wavelength spectrum of these is slightly more restricted compared 

to down-welling light, i.e. they are more similar to the spectra at a slightly greater water depth 

(Dalton et al., 2010; Sabbah et al., 2011). As fish body shapes are complex and individuals move 

within the water column, estimating which proportion of which light illuminates which part of a 

fish’s body is challenging and was outside of the scope of this study. For example, while 

haplochromine anal fins and egg spots are oriented perpendicularly to the water surface most of the 

time, during mating males typically present them oriented towards the water surface and down-

welling light illuminates them (authors’ own observations, and also see Theis et al. (2012)). Finally, 

side-welling light spectra were not available for P. nyererei’s habitat, which is why only down-welling 

light is considered as ambient light of the fishes’ habitats. Body coloration spectra were then 

modeled by multiplying the corrected relative reflectance spectra with the respective light spectrum:

 ;𝐼ℎ𝑎𝑏.𝑟𝑒𝑓,  𝜆 = 𝐼𝑠𝑡.𝑟𝑒𝑙.𝑟𝑒𝑓, 𝜆 ×  𝐻𝐿𝑑𝑒𝑝,𝜆

where Ihab.ref,λ is the intensity of reflectance under habitat light at wavelength λ, Ist.rel.ref,λ is the 

standardized relative reflectance intensity for a given wavelength λ, and HLdep,λ is the intensity of the 

habitat light at wavelength λ.

Another standardization of obtained spectra followed (i.e., male and female reflectance curves 

as well as the habitat sunlight curve were adjusted to the same integral). It should thus be noted that 

estimated color spectra of body surfaces averted to the water surface are expected to be estimated 

slightly broader than reality this way.

We combined the visual sensitivity of African cichlid species and the modeled color patterns of 

males and females in their respective habitats by combining the weighted retina sensitivity curves, A
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peak wavelength positions of each expressed opsin and the reflectance patterns in single plots (Fig. 3, 

Fig. S12). To quantify how chromatically conspicuous each reflectance spectrum is in its natural 

habitat light, the percentage of its integral not overlapping with the habitats’ ambient light spectrum 

was calculated by first subtracting for each wavelength the habitat light from the body reflectance 

and then dividing the sum of absolute distances across all wavelengths by the integral of the habitat 

light spectrum (=integral of reflectance pattern), and then multiplying it by 100 to obtain 

percentages:

(i) Calculation of divergence spectrum:

 ;𝛥𝐼𝜆 = 𝑎𝑏𝑠(𝐼𝑠𝑡.ℎ𝑎𝑏.𝑟𝑒𝑓,  𝜆 ― 𝐻𝐿𝑠𝑡. 𝑑𝑒𝑝,𝜆)

where ΔIλ is the absolute value of the difference between the standardized body reflectance intensity 

under habitat light at the wavelength λ (Ist.hab.ref,λ) and the standardized habitat light intensity at the 

wavelength λ (HLst.dep,λ) (Fig. S13).

(ii) Calculation of spectral divergence:

 ;𝐶 =
∑𝛥𝐼

∑𝐻𝐿𝑠𝑡. 𝑑𝑒𝑝
∗ 100

where C is the chromatic conspicuousness (either MC in males or FC in females; Table 3).

Small chromatic conspicuousness values thus suggest body color evolution to be driven either 

by sensory drive (or by non-social drivers, e.g., for camouflage), while larger values may argue for 

reciprocal evolution of body color and the visual system by sexual selection. Again, the down-welling 

light spectrum was used although it is likely that side-welling light may more commonly be in the 

background of a cichlid fish observed by a conspecific. However, as mentioned before, side-welling 

light spectra were unfortunately not available for Lake Victoria habitats and while there are 

measurements for Lake Malawi habitats (e.g., Dalton et al., 2010; Sabbah et al., 2011) published data 

did not allow us to calculate a reliable attenuation curve. 

Subsequently, sexual chromatic divergence per species and measurement spot was estimated 

by first standardizing aforementioned curves reflecting differences between each sexes’ reflectance 

patterns and the habitat light (i.e., ΔI spectra; Fig. S13) to equalize absolute integrals between them, 

and then calculating their percentage of overlap (as was done to obtain FC and MC values). For 

example, L. caeruleus’ “back” reflectance spectra have male and female chromatic conspicuousness 

values of MC=35% and FC=43%, while those of P. lombardoi are “only” 17% and 20%, respectively. 

However, sexual chromatic divergence values for L. caeruleus and P. lombardoi are 4% and 100%, 

respectively. This illustrates that, while both sexes of L. caeruleus are much more chromatically A
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conspicuous than any P. lombardoi sex, the sexes of the former species differ from the habitat light at 

the same wavelength ranges (despite one being darker than the other), while these ranges differ to 

100% in P. lombardoi. Results of these analyses are presented in the main manuscript only for one 

measurement spot per species (the one with the highest average chromatic conspicuousness; Table 

3), but data for all spots are presented in the supplementary information (Fig. S13). 

Finally, as for the weighted and corrected retina sensitivity curves and the habitat light, λP25, 

λP50, λP75 and Δλ were calculated (Table 2). Final sample sizes for all measurements are reported 

(Table S7). Data processing, visualization and statistical analyses were conducted in R (v. 3.5.1; R 

Core Team, 2013).

Simplifications and assumptions

The used analytical pipeline integrated a wide range of data, however, several aspects of cichlid 

ecology and physiology had to be simplified as sufficient data was either not available or too 

complex. Simplifications of the ecology include the usage of only two water types, the negligence of 

seasonality effects on those (Smith et al., 2012) and the fact that fish occur at a range of water depths 

and only the mean depth is used here. Also, our analysis does not account for changes in water 

absorption properties with increasing depth and only considers down-welling ambient light (also for 

chromatic divergence calculations, albeit side-welling ambient light or rock reflectance may be more 

appropriate; Rennison et al., 2016). Further simplifications include the negligence of chromophore 

usage (A1/A2 ratio, though its effect on the visual systems of Lake Malawi cichlids is probably small 

(Carleton & Kocher, 2001)), the structuring of cones in single- and double cones and potential shifts 

in diurnal cycle between opsin classes, although recent studies reveal that standardizing using 

overall opsin expression is a valid approach, especially as samples were processed in the early 

afternoon (Yourick et al., 2019). Furthermore, we do not account for opsin expression variation 

during ontogeny (only sexually mature fish were used and, among those, no relationship of opsin 

expression and age could be found) or due to plasticity (e.g., Hofmann et al., 2010b; Nandamuri et al., 

2017; Härer et al., 2019), although a minimum of two weeks acclimatization to artificial lighting was 

used to avoid bias in plasticity. Additionally, measuring physiological variables (opsin expression, 

lens transmission) can only approximate visual capabilities while actual visual capabilities can only 

be determined using behavioral approaches (e.g. Kelber et al., 2003; Kröger et al., 2003; Schluessel et 

al., 2012; Kalb et al., 2015; Escobar-Camacho et al., 2017; Escobar-Camacho et al., 2019b). Finally, we 

only consider the measured spots and neglected any body patterns that differed due to variation in 

brightness.
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Results

Opsin expression and lens transmittance vary among species but not between sexes 

Our analyses showed that sexes did not differ in their patterns of opsin expression after species-wise 

correction for multiple testing (Fig. 2, Table S3, Table S5). Generally, all Neotropical cichlids 

examined expressed the same three cone opsin genes (sws2a, rh2a and lws). However, the expression 

ratio of double-cone opsins rh2a to lws varied considerably among species, with A. cacatuoides 

expressing much more lws and H. nematopus expressing more rh2a. African species expressed more 

diverse combinations of opsin genes among species (Fig. 2 F-J) and no single opsin was expressed in 

all African species (lws and rh2a were each expressed in all but one species; lws only ~1% in M. 

auratus and rh2a only ~2% in M johannii). Rhodopsin 1 (rh1) was expressed in all species with high 

variation among species: whereas in M. auratus rh1 expression exceeded 92% of all expressed 

opsins, it was slightly less than 30% in A. ortegai. Between species, lenses were found to have very 

variable transmittance for light of very short wavelengths: whereas lenses of P. nyererei do not allow 

UV light to pass (T50 of 396nm), much lower T50 values were found in species with UV-sensitive 

retinas (Fig. 4, Table S6), most notably, P. lombardoi and M. johannii had average T50 values of 

337nm and 349nm, respectively. Within species lenses varied only little, particularly in T50 values 

(Fig. S5). Finally, we also note that in A. ortegai, despite no overall effect of rearing background was 

detectable (Table S4), in opsin wise analyses this factor seemed to have affected sws1, rh2a and rh1 

expression. Sws1 and rh2a genes were virtually not expressed in A. ortegai (both <0.1% of expressed 

cone opsins) but notably rh1, whose expression is approximately 30% of all expressed opsins, was 

more highly expressed in laboratory-raised individuals than in wild-caught ones. Even when rearing 

background was considered, sexes did not differ in opsin expression in this species (Table S5). 

Visual sensitivity of African cichlids is associated with their light environment

Variation in their visual sensitivity of African cichlids was partially correlated to their habitat light 

spectrum. The center wavelength (λP50; Table 2) of the investigated cichlids’ lens-corrected visual 

sensitivity curves showed considerable variation, with Melanochromis species being most visually 

sensitive in the short light wavelength range (469nm and 476nm for M. auratus and M. johannii, 

respectively), while P. lombardoi’s sensitivity is at intermediate wavelengths (507nm), and L. 

caeruleus and P. nyererei were visually sensitive in the long wavelength range (541nm and 544nm, 

respectively; Table 2). This variation was reflected in the center wavelength of the respective habitat 

light spectra: especially the habitat light spectrum experienced by P. nyererei was shifted particularly 

to the long wavelength range (center wavelength was 548nm) compared to the Lake Malawi light 

spectra (all at 487-488nm). We also found that the widths of the visual sensitivity spectra were A
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narrower in species with a narrower habitat light (P. nyererei and L. caeruleus habitat light widths: Δλ 

= 62nm in both cases), except for P. lombardoi, which showed broad visual sensitivity despite living 

in a slightly more restricted light environment than the Melanochromis species (P. lombardoi and 

Melanochromis habitat light widths: Δλ = 81nm and 92nm, respectively; Table 2).

Body reflectance of African cichlids is highly dependent on their natural light environment

Relative reflectance patterns of all African cichlid species showed a pronounced reflection peak at 

around 340nm light wavelength (i.e., UV-light; Fig. 4A-E; Fig. S8). Reflectance at surface-level sunlight 

(Fig. S10) showed that almost all species reflected sunlight at a wide range of wavelengths, although 

darker individuals reflected overall less light prior standardization. Estimated reflectance patterns 

(and thus body color) changed dramatically when the natural light environment was considered (Fig. 

4, Fig. S11). As expected, due to the restricted wavelength compositions in the natural habitats the 

estimated reflectance spectra became narrower and the reflectance peak in the UV light as well as the 

reflectance shoulder in the long wavelength light range of some species was reduced or even 

disappeared. Particularly striking was this effect in P. nyererei and L. caeruleus, for which the water 

column was predicted to absorb considerable portions of the down-welling light due to dissolved 

particles in the water column and habitat depth, respectively (habitat light width: Δλ = 62nm in both 

cases; Table 2). For these two species, chromatic conspicuousness was determined to be very high 

and the most conspicuous measured spot in both species was the “back” (Fig. 4A, B, F, G; Fig. S13; 

Table 3). This spot in males and females of P. nyererei and L. caeruleus showed very distinct and 

narrow reflectance spectra (body reflectance: Δλ = 60nm & 62nm and 56nm & 47nm, respectively; 

Table 2). While in P. nyererei the male showed much higher chromatic conspicuousness than the 

female at this spot, in L. caeruleus both sexes showed very high conspicuousness values (Table 3). 

Cichlids inhabiting the relatively shallow waters of Lake Malawi, where the light spectra were 

predicted to be relatively broad include P. lombardoi and both Melanochromis species (habitat light 

width: Δλ = 81nm and 92nm, respectively; Table 2). These species reflected considerable amounts of 

UV-light, while this was virtually absent in P. nyererei and L. caeruleus under habitat light. Their male 

and female chromatic conspicuousness values were intermediate to very high (Table 3) on their most 

chromatically conspicuous spot (Fig. 4C-E, H-J; Table 3). While P. lombardoi and M. johannii 

reflectance spectra showed intermediate male and female body reflectance spectra widths (body 

reflectance: Δλ =85nm & 73nm and 82nm & 75nm, respectively; Table 2), in M. auratus the males 

were found to have a less distinct reflection peak, whereas females had a very distinct one (body 

reflectance: Δλ =98nm & 46nm). Finally, in P. lombardoi and M. johannii, divergence in reflectance 

spectra between sexes extended clearly into the short wavelength light range around 400nm and 

their sexes’ chromatic conspicuousness did almost not overlap (sexual chromatic divergence both A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

97%; Table 3; Fig. S13), while overlap was much stronger for all other species in which 

conspicuousness was high in both sexes. 

Light environment, reflectance and spectral sensitivity in African cichlids 

Lastly, we combined our approximations of fish reflectance with the modeled weighted and 

corrected retina sensitivity curves (Fig. 4, S6; Table 2). Species with a single clearly defined 

reflectance peak appeared to show most pronounced opsin expression in close proximity to this peak 

and the visual sensitivity curve is rather narrow (P. nyererei and L. caeruleus; Table 2: λP50 values). 

For P. nyererei this reflectance peak also coincides well with the environmental light spectrum, but 

this is not the case for L. caeruleus (Fig. 4G). In species with divergent reflectance peaks between 

sexes and thus large sexual chromatic divergence values, expressed opsins appeared to cover a wider 

range of wavelengths (P. lombardoi, M. johannii, Table 2 & 3), which is reflected in wider visual 

sensitivity curves (Fig, 4; Table 2). Furthermore, species with sexual dichromatism and a reflectance 

peak at a shorter wavelength (M. johannii & P. lombardoi) also expressed the short-wavelength 

sensitive opsin sws1. M. auratus individuals did not express this opsin, but instead sws2a, despite 

inhabiting a very similar habitat as M. johannii that provides light of short wavelengths and its lens 

allowing UV light to reach the retina (albeit in M. auratus to a lesser extent than in M. johannii and P. 

lombardoi; T50 at 366nm, 337nm and 349nm, respectively). Still, in our study, the M. auratus’ retina 

sensitivity curve appears to overlap more with the broad habitat light spectrum than its rather 

specific body reflectance curves.

Discussion

Cichlid fishes are famous for their astonishing diversity in body colorations, both across and within 

species (e.g. Mcelroy et al., 1990; Seehausen & van Alphen, 1998; Stiassny & Meyer, 1999; Seehausen 

et al., 2008). However, whether and how this diversity is linked to the species’ visual systems, 

environment, and body coloration remains unresolved in many cases (Dalton et al., 2010; Cronin et 

al., 2014; Price, 2017). In this study we integrated ecological, physiological, and molecular data to 

link ecology and visual abilities, and thus provide new insights in the evolutionary forces that shaped 

cichlid color and their vision systems.

No evidence of sexually dimorphic visual sensitivities in cichlid fishes

Our study found no evidence for sexual dimorphism in visual sensitivities of any of the investigated 

cichlid species, and thus found no support for the hypothesis that run-away sexual selection might be 

shaping sex specifically opsin expression in dimorphic cichlid species (Fig. 1A-D). Few studies have 

pointed to the likelihood of sexual dimorphisms in visual sensitivity co-evolving with dimorphic A
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nuptial coloration (Kelber & Osorio, 2010; Sabbah et al., 2010; Bloch, 2015), but this does not seem to 

be generally the case for cichlids. Across the African and Neotropical cichlid radiations, and across a 

wide range of body coloration including monomorphic and dimorphic species no sexual dimorphism 

in visual sensitivity was found. For instance, while in H. nematopus both sexes’ exhibit grey and 

rather dull body coloration, albeit brightness and pattern can change during mating season, in the 

closely related species H. nicaraguensis sexes differ strikingly in red and green body coloration. 

However, neither of them shows evidence for differences in opsin expression patterns between 

sexes.

A previous study (Sabbah et al., 2010) suggested that there could be differences in opsin 

expression between sexes of M. auratus and one of the species we also included in our study. Sabbah 

et al. (2010) calculated opsin expression indirectly, based on the frequency of cone pigments from 

spectral sensitivity data obtained from electroretinograms. Our data does not support that 

conclusion, and is thus in agreement with findings of no differences in color discrimination capability 

between sexes in this species (Coniam, 2014). However, it cannot be fully excluded that other species 

may show expression differences or that differences in opsin expression might be too small to 

capture in this study (see also below). The evolution of dimorphic visual systems may have been 

hampered in the investigated species due to highly complicated mechanisms of sex determination 

that can vary across species: while in some cichlid species sex clearly is determined entirely 

genetically (Ser et al., 2010; Parnell & Streelman, 2013; Gammerdinger et al., 2018; Gammerdinger et 

al., 2019), hormone titers can also affect sex determination in others. Hormone titers were also 

shown to affect sex-specific body coloration, which might have promoted the evolution of sexual 

dimorphism in color, but although hormones can affect visual sensitivity in cichlids, there is no 

evidence that this effect can be different between sexes (Francis & Barlow, 1993; Baroiller et al., 

1995; Baroiller & D'cotta, 2001; Dijkstra et al., 2017; Härer et al., 2017). Thus, linking opsin 

expression to a specific sex may, evolutionarily speaking, not be as straightforward as in species 

where sex is solely genetically determined. 

Is diversity in Neotropical cichlid vision constraint by phylogenetic history?

Expression levels of cichlid opsin genes varied considerably among the investigated cichlid species 

(Fig. 2, Fig. 1D), however, compared to studied African cichlids, Neotropical cichlids showed no 

interspecific diversity in the set of expressed opsins, despite diverse body colorations and 

pronounced sexual dimorphisms in most of them. Nonetheless, expression levels within expressed 

genes varied. For instance, both sampled Central American cichlids expressed the rh2a and lws at the 

same relative level, while sampled South American Apistogramma species always expressed at least A
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twice as much lws than rh2a - in agreement with data from other South American cichlids (e.g., 

Escobar-Camacho et al., 2019a). Sampled Central American species inhabit a variety of different 

water bodies, ranging from very clear to rather murky water (based on our own observations in the 

field). It is thus not surprising to find a lack of sws1 expression as UV light is likely virtually absent in 

many more murky habitats, dominated by green-brown light wavelengths. However, sampled 

Apistogramma species inhabit the Amazonian drainage system and while A. agassizii and A. 

cacatuoides are relatively widely distributed species and occur in a variety of waters, A. ortegai has 

been found exclusively in extremely clear forest streams, and all sampled Apistogramma species 

inhabit shallow waters (Römer, 1998; Britzke et al., 2014). Thus, the exceptionally high rh2a and 

(very) low rh1 expression levels in these species may reflect an adaptation to these bright light 

environments. Absence of sws1 expression in all of them despite inhabiting water depths and 

clarities which allow UV light to reach them argues for a strong phylogenetic constraint. However, 

closed canopy cover may overshadow particularly smaller streams and thus remove UV light 

effectively from their habitat, rendering sws1 expression unnecessary. Escobar-Camacho et al. (2016) 

found that the same three opsins were expressed in all of three different studied Amazonian cichlids, 

suggesting that Amazonian cichlids generally have a limited opsin repertoire. Although sampled 

representatives of Central American lineages expressed the same three cone opsins in our study, they 

appear to be generally less constrained in their visual repertoire as recent studies found more visual 

diversity among them, with at least some of them also expressing sws1, sws2b and rh2b in certain 

habitat types or developmental stages (Härer et al., 2018; Karagic et al., 2018).

Natural selection can partially explain variation in the relative rod opsin expression

Rh1 sequence evolution has previously been identified to be under divergent selection in cichlids 

(e.g. Schott et al., 2014; Torres-Dowdall et al., 2015; Hauser et al., 2017), and is commonly found to 

be dominant in the total opsin expression (e.g., Yourick et al., 2019), which is expected given the 

relative abundance of rod versus cones on retinas of fish. However, we found that the proportion of 

rh1 expressed relative to all expressed opsins is highly variable among the studied species, making 

up as little as only ~30% of total opsin expression in the Neotropical cichlid species A. ortegai (Fig. 3; 

unpublished transcriptome on another Apistogramma species show similarly low levels). Although at 

this point the causes of this variation are unknown, we speculate that this could be due to variation in 

the light environment of the habitats these species occupy or the result of different patterns of daily 

activity. For example, the studied African species that live in rather dim-light habitats, such as P. 

nyererei and L. caeruleus, expressed rather high amounts of rh1 (86% and 77%, respectively) 

compared to two species living in brighter environments, P. lombardoi and the M. johannii (68% and 

66%, respectively). An exception to this pattern is M. auratus, that lives in approximately the same A
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habitat as M. johannii but shows the highest rh1 expression among the investigated fish (92%). 

Reasons for this may include behavioral deviations from the other species (e.g. activity of this species 

could be during the dimmer dusk and dawn, instead of during bright daylight). We therefore 

encourage in the future to investigate the potential causal relationship between rh1 expression and 

ecological parameters. Determining whether expression differences in rh1 are caused by varying 

numbers of rod cells in the retina, varying expression levels of rh1 per rod or a combination of both 

was beyond the scope of this study but may also foster future research. 

Habitat light explains some, but not all variation in cichlid’s visual sensitivities 

A central aim in visual evolutionary ecology is to determine the major mechanisms that drive and 

tune visual perception (Levine & MacNichol, 1979; Lythgoe, 1984). Ambient light was already 

proposed to be a major determinant of opsin gene expression and visual pigment sensitivity 

(Cummings & Partridge, 2001; Seehausen et al., 2008; Cronin et al., 2014); yet, we found that this 

effect may vary considerably among species. For example, species whose habitat light is deprived of 

short-wavelengths (UV) always expressed less than one percent sws1, supporting the hypothesis that 

ambient light affects opsin expression. Furthermore, for the most part lens T50 values negatively 

correlated with sws1 expression. This co-evolutionary pattern argues for the ecological importance of 

short-wavelength light perception, e.g. to recognize conspecifics or food items, which both can reflect 

short-wavelength light (Hofmann et al., 2009; Hofmann et al., 2010a). This is most strikingly 

demonstrated in M. johannii, whose T50 is lower than any of those previously measured in other 

cichlids (Hofmann et al., 2010a) and comparable with some coral reef fish (Siebeck & Marshall, 

2001). While negligible levels of short-wavelength light thus likely predicts a lack of short-

wavelength vision in fish, UV light availability does not guarantee UV visual sensitivity: M. auratus 

lives in water depths in which considerable amounts of short-wavelength light are still available, and 

which are also reflected by the fish’s body. But this species does not seem to exploit the short-

wavelength portion of the available light to gather visual information, even though its lens does allow 

some UV light to reach the retina.

In addition to ecological selection via the habitat light conditions and other factors, body 

coloration may be another factor affecting vision in cichlids (e.g., via sexual selection). Our results 

suggest that cichlid vision in the rather murky Lake Victoria habitat is driven primarily by the 

constraint light availability compared to Lake Malawi and less so by sexual selective forces (Fig. 4). In 

Lake Victoria, the light environment is narrow and enriched in long wavelength light (Fig. 4; 

Seehausen et al., 2008). Body reflectance patterns of females of the species inhabiting this lake, P. 

nyererei, match almost perfectly the ambient light spectrum. Males’ reflectance peak also coincides 

with the ambient light peak, but overall reflectance is considerably shifted towards the long-A
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wavelength range resulting in a moderate chromatic dimorphism. Furthermore, as previously 

described (Carleton et al., 2005), P. nyererei showed a long wavelength shifted visual sensitivity 

matching the light environment. Our study thus confirms the ascribed role of sensory drive in these 

fish, in which the habitat light putatively shaped the visual sensitivity of the fish and nuptial 

coloration evolved correspondingly to their visual sensitivity (Fig. 1A; Carleton et al., 2005; 

Seehausen et al., 2008).

The light environment of Lake Malawi is spectrally broader than that of Lake Victoria (Dalton 

et al., 2010; Sabbah et al., 2011), which is reflected in high diversity in the visual system of the native 

cichlid species (Hofmann et al., 2010b; Carleton et al., 2016; this study). Additionally, we also found 

variation in alignment patterns among the spectral curves of the light environment, body coloration 

and visual sensitivity (Fig. 4). L. caeruleus was the only species from Lake Malawi in which no sexual 

dichromatism was detected. Its body reflectance patterns do not exploit the whole range of the 

available light spectrum (as reflected in very large male and female chromatic conspicuousness 

values), but it is shifted towards longer wavelengths, reflecting almost exclusively the little light in 

the yellow part of the spectrum that reaches the depth they inhabit. Their visual system also appears 

to be particularly tuned towards the yellow part of the spectrum of the light present in their 

environment. Thus, in this species visual sensitivities do fall within, but do not completely span the 

prevalent light environment. Importantly, visual sensitivities overlap with body coloration, 

suggesting that the visual system may have co-evolved with body coloration. The other three species 

(P. lombardoi and M. johannii, and to a lesser degree M. auratus) are strongly chromatically 

dimorphic (i.e. sexual dimorphism is not solely due to variations in melanin and thus brightness, Fig. 

4). The opsin expression patterns of P. lombardoi, M. auratus and M. johannii suggest that their visual 

systems evolved to exploit the whole range of light available in their environment. These species 

have relatively broad visual sensitivities and the dominant sensitivity peaks roughly coincide with 

the intensity peak of the spectrally broad habitat light (Fig. 4H,J, Fig. S12, Table 2). Two of these 

species are also pronounced chromatically sexually dimorphic, with the sexes falling at opposite ends 

of their habitat light spectrum (Fig. 4H,J, Fig. S12, Table 3). Assuming that the ancestral pattern of 

opsin expression of cichlids colonizing Lake Malawi include sws2a, rh2a and lws (O'Quin et al., 2010), 

two potential evolutionary scenarios linking environmental light, visual abilities and body patterns 

emerge: (a) Initially, given the broad light spectra of the environment, ecologically relevant visual 

cues across a broad spectral range selected for fish with a broad visual sensitivity. Secondarily, broad 

sensitivity allowed dichromatism to evolve within the sensitivity range, for example driven by 

sensory biases for such ecological cues. (b) Alternatively, sexual dichromatism in body coloration 

may have co-evolved with the visual system. However, at this point we cannot determine if the A
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evolution of the sensory systems of the studied chromatically dimorphic species was initially driven 

by ecologically relevant cues for which a broad visual sensitivity spectrum was selected, and/or by a 

reciprocal co-evolution of vision and the body coloration of their sexually dichromatic conspecifics. 

Nonetheless, both of these evolutionary scenarios require the bright and spectrally broad ambient 

light present in these species’ habitats compared to species living in deeper or spectrally more 

restricted habitats (Price, 2017). 

Contrasting these species, the visual sensitivity peak of M. auratus best exploits the short 

wavelength part of the spectrum available in its habitat (although not in the UV light range), and it is 

particularly short wavelength shifted compared to its body reflectance pattern (λP50 are 469nm, 

488nm and 561/581nm, respectively, Table 2, Fig. S12). The dominant reflectance peak of M. auratus 

(particularly of females) is at the long-wavelength tail of the ambient light intensity peak (Fig. 4I, Fig. 

S12), and, thus, there is no evidence for body coloration in M. auratus being the result of sensory 

drive, or that its visual sensitivity is shaped by conspecific body coloration. Thus, it is possible that 

other factors have shaped M. auratus’ visual system. For example, it is plausible that contrast 

detection and resolution plays a more important role in this species as both sexes show particularly 

striking stripe patterns on their body flanks and fins, which are significantly altered in dominant 

males compared to females and submissive males (Fig. 4N). It should be noted that many M. auratus 

males used or described in other publications did show some blue reflectance, which can also be seen 

in the photos illustrating the species in Fig. 4 as well as the spectra illustrating relative reflectance 

(compare 4B and 4D, where M. auratus shows a subtle reflectance peak in the short blue wavelength 

range; Dalton et al., 2010). However, this blue reflectance was not picked up very strongly by our 

spectrometric measurements, potentially due to a specific population that does not exhibit strong 

blue reflectance or the blue reflectance not being at a measured spot. Thus, we cannot discard that 

the relatively broad visual sensitivity observed in M. auratus (Table 2) may be linked to this blue 

body reflectance.

In sum, the broader light spectrum of Lake Malawi seems to allow for high variation in the 

pattern of opsin gene expression of cichlid fish, with some species having the ability to perceive the 

complete spectrum of available light and others tuning to particular parts of the spectrum, either 

matching the spectral reflectance of nuptial coloration or not. Indeed, expressing opsins with 

absorption spectra not well coinciding with the ambient light spectrum argues that the habitat’s light 

environment is visually not too restrictive (Loew & Lythgoe, 1978). Expanding this approach to other 

lineages might help to determine the generality of these result and highlight important aspect of 

cichlid vision evolution. For instance, the inclusion of riverine haplochromine species that 

ecologically resemble those lineages that have colonized Lake Malawi and Lake Victoria and initiated A
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their adaptive radiations would be valuable additions. Integrating the phylogenetic history by using 

comparative methods would thus further our understanding of the evolutionary drivers of cichlid 

visual ecology.

Methodological approach and future directions

Besides providing insights in cichlid visual evolution, we applied an integrated set of measurements 

that allowed the quantification of parameters that are often hard to quantify, such as “chromatic 

conspicuousness”, “sexual chromatic divergence”, and “spectra widths” (Table 2, S6, Fig. S13). This 

approach is meant to complement, rather than replace, methods that aim to estimate color 

discrimination abilities (e.g., color distance and just noticeable differences; e.g., Carleton et al., 2016; 

Dalton et al., 2017; Escobar-Camacho et al., 2019b). Our approach allowed us to work with all 

expressed opsin genes and we investigated their relative expression levels. However, we could not 

integrate luminance into our models, although it likely affects color discrimination abilities, 

particularly in dim habitats (Brown, 1951). Furthermore, in this study we interpreted opsin 

expression without considering the cone type (Carleton et al., 2005; but see Fig. S3) or how signals 

from different cones types are integrated. While there have been some recent advances in this field 

(e.g., Dalton et al., 2017), it still not fully understood how visual signal strength is composed in 

cichlids, i.e. to which extent cell type number and / or opsin expression within these cell types 

contribute to visual perception. Finally, phenotypic plasticity is known to strongly affect opsin 

expression (e.g., Hofmann et al., 2010b; Nandamuri et al., 2017; Härer et al., 2019). While we aimed 

here to avoid any bias due to plasticity by first acclimatizing studied cichlid species to laboratory 

light conditions in order to compare the genetically determined portion of these diverse species’ 

visual systems (Carleton et al., 2016; Nandamuri et al., 2017), studies comparing cichlid species’ 

performances within a specific field setup can also sample environmental parameters and fish 

retinas simultaneously. The difference in rh1 expression between A. ortegai rearing backgrounds 

(Table S5) furthermore illustrates that developmental plasticity may contribute to adult opsin 

expression levels, which we also could not account for with our acclimatization period. Despite our 

best efforts to incorporate as much ecological and molecular information as possible, the natural 

habitat of cichlids will always be so much more complex then we accounted for in our study (see 

“simplifications and assumptions” paragraph in the methods section). Nonetheless, by integrating 

more information on the molecular underpinnings of cichlid vision as well as their ecology future 

studies will be provided with more statistical power for correlative analyses.
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Summary & Concluding remarks

Freshwater visual environments are often much more complex and diverse than those of marine or 

terrestrial environments, partially due to a higher variability in light-transmission properties (Cronin 

et al., 2014). Therefore, it is challenging to determine the importance of factors that may have 

affected fish vision. Our integrative approach sheds new light on the degree to which fish vision 

evolved due to selection for their respective habitats, e.g. by adjusting opsin expression levels 

according to the habitat’s prevalent light regime. Opsin expression varied within the range of 

available light wavelengths and habitat light appears as the primary selective force on visual 

sensitivities. However, our evidence suggested that cone opsin expression patterns also evolved to 

optimize perception of conspecific coloration, directly or indirectly. We provide additional 

knowledge to previous findings by excluding sexual visual dimorphism as being common and thus a 

considerable factor in cichlid visual ecology. More data on ecological parameters but also visual 

properties of individual cichlid species are necessary to discern the relative contributions of 

alternative evolutionary forces driving the diversity of visual ecologies in these colorful fish. 
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Table 1 Details on the examined species’ habitats and ecology.

Species

Conti-nent

Specific 

origin

Water

Clarity*

Habitat

depth*

Adult

food

Depth 

in 

analysi

s

Body color 

sexual 

dimorphism?

H. nematopus 1-5m Aufwuchs
Only 

brightness

H. 

nicaraguensis

Nicara-

gua & 

Costa 

Rica

Depending on 

specific habitat, 

relatively clear to 

very murky (Great 

Nicaraguan Lakes)
1-5m

Insects, 

detritus, 

leaves

Color

A. agassizii
Black/Clear/white 

water
<1m Color

A. ortegai Very clear Color

A. cacatuoides

N
eotropics Ama-

zonas 

drainag

e rivers
Clear/white water

<0.5m

Small 

arthropods, 

leaf debris, 

algae

NA

Color

P. nyererei
Lake 

Victoria
Murky, brownish 3-8m zooplancton 5m

Color & 

brightness

L. caeruleus
10-30m,

mostly 25m
25m

Only 

brightness

P. lombardoi
6-30m, 

mostly 10m
10m

Color and 

brightness

M. auratus 3-8m 6m
(Color and) 

brightness

M. johannii

Afrotropics

Lake 

Malawi
Clear

3-8m

Algae,

Aufwuchs

6m
Color and 

brightness

* References: Kullander, 1986; Konings, 1990; Witte & Van Oijen, 1990; Römer, 1998; Maan et al., 

2006; Römer & Hahn, 2008; Rodrigues et al., 2012; Britzke et al., 2014; Froese & Pauly, 2014
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Table 2 Wavelengths at which the integrals of the (a) lens-corrected weighted retina sensitivity 

curves, (b) habitat light spectra, and (c) male and female reflectance spectra in habitat illumination 

per species (for most chromatically conspicuous spot, see Table 3) were divided into integral 

quarters and the wavelength difference between the first and third quarter borders. This difference 

was used to reflect the overall width of the sensitivity curves.

a) 

Visual 

sensitivity

Integral cutoff [nm]

λP25 λP50 λP75

Width 

[nm]

= Δλ

P. nyererei 502 544 580 78

L. caeruleus 500 541 577 77

P. lombardoi 455 507 554 99

M. auratus 424 469 517 93

M. johannii 419 476 515 96

b) 

Habitat light
Integral cutoff [nm]

λP25 λP50 λP75

Width 

[nm]

= Δλ

P. nyererei 516 548 578 62

L. caeruleus 458 488 520 62

P. lombardoi 446 487 527 81

M. auratus 442 488 534 92

M. johannii 442 488 534 92
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c) 

Body 

reflectance

Integral cutoff [nm]

λP25 λP50 λP75

Width 

[nm]

= Δλ

♂ 558 584 618 60
P. nyererei

♀ 537 568 599 62

♂ 498 532 554 56
L. caeruleus

♀ 509 536 556 47

♂ 470 518 555 85
P. lombardoi

♀ 455 489 528 73

♂ 463 517 561 98
M. auratus

♀ 535 559 581 46

♂ 443 478 525 82
M. johannii

♀ 496 542 571 75
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Table 3 Divergence between habitat and body color spectra after standardization in % (“chromatic 

conspicuousness”; i.e. small values indicate that reflectance spectra approximate the ambient light 

spectrum while large values indicate a divergent spectral composition) for males (MC) and females 

(FC), and the percentage to which this divergence differs between sexes after additional 

standardization (SCD; i.e. small values suggest that sexes differ from the habitat at similar 

wavelength ranges, while large values suggest that these wavelength ranges differ and fish are 

sexually dichromatic). Discussions in the manuscript were focused on measurement spots with the 

highest chromatic conspicuousness averaged between sexes per species ((MC+FC)/2; shaded here in 

grey; see arrowheads Fig. 4).

cheek back belly anal fin
egg 

spots
other

MC FC SCD MC FC SCD MC FC SCD MC FC SCD MC MC FC SCD

P.ny 3 5 32 31 4 43 5 3 75 11 9 40 10 - - -

L.ca 12 27 16 35 43 4 35 35 21 3 27 95 12 37 38 7

P.lo 19 21 97 17 20 100 22 16 93 14 16 92 35 - - -

M.au 9 27 44 6 7 68 14 38 15 15 58 20 49 7 7 59

M.jo 25 31 94 8 40 32 11 36 97 23 35 92 21 29 39 97
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Fig. 1 Evolutionary mechanisms potentially affecting the evolution of body coloration in cichlids. (A) 

The light environment of a cichlid is thought to be a main determinant of the fish’s visual properties. 

According to the ‘sensory drive’-hypothesis, nuptial color patterns evolved to match the 

environmental light as this optimizes visual perception by conspecifics. (B) Arbitrary preferences 

(e.g. ‘sensory biases’) for beneficial environmental signals can be linked to improved visual 

sensitivities for such signals. If preferences are projected on conspecifics, sexual selection for body 

colors that deviate from the dominant environmental light regime can be the result. (C) For social 

interactions, mate-choice then replaces ecological selection as driver of preference and visual 

sensitivity. A co-evolutionary feedback-loop can evolve between continuously increasing preference 

and linked visual sensitivity, and increasingly exaggerated body coloration, as predicted by Fisher’s 

runaway sexual selection-model. (D) An extreme outcome of this model may be found in species with 

a choosing sex and a chosen sex, as it is the case for many cichlids. Here, sex and the preference for 

specific nuptial body colorations may become evolutionarily uncoupled (e.g. by evolving sex 

chromosomes). Thus, while matching visual sensitivity for the mates’ body coloration is particularly 

adaptive for choosing females, in males it is more adaptive to evolve their visual properties according 

to their non-social visual environment. In turn, males have to display (potentially costly) nuptial 

body colorations, while females can remain inconspicuous. Therefore, sexual dimorphism is expected 

to be found in body coloration as well as in visual properties. 

Fig. 2 Relative opsin expression of male (darker columns) and female (lighter columns) individuals of the 

ten investigated cichlid species. Mean relative expression levels of the six cone opsin genes and the rod 

opsin gene rh1 were at the same level between sexes. In Neotropical cichlids (A-E) the same set of 

expressed opsins with some variation in relative expression levels were found while pronounced 

differences in relative rh1 expression could be detected. In African Cichlid (F-J) opsin expression patterns 

were more variable, including rh1. Error bars reflect the standard error.

Fig. 3 Pipeline to integrate opsin expression, body reflectance and natural habitat conditions. To 

characterize the visual system of investigated species, absolute opsin expression values were used to 

compute relative values. Opsin absorption peak wavelength and a general opsin absorption curve 

equation were used to calculate opsin absorption curves, which were weighted by the species-

specific opsin expression profile and the transmission properties of the lens. For each species, the 

natural light environment was estimated by integrating a spectrum of the sunlight, the habitat A
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water’s specific absorption properties (taken from previously published literature) and the depth of 

the fish’s natural habitat. The reflectance of each species and sex was characterized by measuring its 

relative reflectance, multiplying it with its habitat light spectrum and standardization. Visual 

capacities and reflective properties were then integrated for each species and measured spot in a 

common plot, showing the average modeled reflectance spectra for both sexes (left axis) and the 

weighted retina sensitivity curve and relative opsin expression levels upside down (right axis).

Fig. 4 Modeled African cichlid relative (A-E) and absolute body reflectance patterns at habitat depths 

(F-J; reflectance spectra represent the most chromatically conspicuous measurement spots on the 

fish as indicated by the arrowheads in K-O). The grey line & white shade represents the standardized 

habitat light spectrum. Additionally, the retina sensitivity curves and mean opsin expression levels 

are indicated bottom up on the right axis of each plot. Assumed habitat depths are 5m, 25m, 10m, 6m 

and 6m for F-J, respectively. Species with broader reflectance spectra in their habitat appear to 

express a broader array of opsins (expression levels <3% not shown). 
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Species 

C
o

n
ti-n

en
t 

Specific 

origin 

Water 

Clarity* 

Habitat 

depth* 

Adult 

food 

Depth 

in 

analysi

s 

Body color 

sexual 

dimorphism? 

H. nematopus 

N
eo

tro
p

ics 

Nicara-

gua & 

Costa 

Rica 

Depending on 

specific habitat, 

relatively clear to 

very murky (Great 

Nicaraguan Lakes) 

1-5m Aufwuchs 

NA 

Only 

brightness 

H. 

nicaraguensis 
1-5m 

Insects, 

detritus, 

leaves 

Color 

A. agassizii Ama-

zonas 

drainag

e rivers 

Black/Clear/white 

water 
<1m Small 

arthropods, 

leaf debris, 

algae 

Color 

A. ortegai  Very clear  

<0.5m 

Color 

A. cacatuoides Clear/white water Color 

P. nyererei 

A
fro

tro
p

ics 

Lake 

Victoria 
Murky, brownish 3-8m zooplancton 5m 

Color & 

brightness 

L. caeruleus 

Lake 

Malawi 
Clear 

10-30m, 

mostly 25m 

Algae, 

Aufwuchs 

25m 
Only 

brightness 

P. lombardoi 
6-30m, 

mostly 10m 
10m 

Color and 

brightness 

M. auratus 3-8m 6m 
(Color and) 

brightness 

M. johannii 3-8m 6m 
Color and 

brightness 

* References: Kullander, 1986; Konings, 1990; Witte & Van Oijen, 1990; Römer, 1998; Maan et 

al., 2006; Römer & Hahn, 2008; Rodrigues et al., 2012; Britzke et al., 2014; Froese & Pauly, 2014 
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a)  

Visual 

sensitivity 

 

Integral cutoff [nm] 
Width 

[nm] 

= Δλ 

  λP25 λP50 λP75 

P. nyererei 502 544 580 78 

L. caeruleus 500 541 577 77 

P. lombardoi 455 507 554 99 

M. auratus 424 469 517 93 

M. johannii 419 476 515 96 

    

b)  

Habitat light 

 

Integral cutoff [nm] 
Width 

[nm] 

= Δλ   λP25 λP50 λP75 

P. nyererei 516 548 578 62 

L. caeruleus 458 488 520 62 

P. lombardoi 446 487 527 81 

M. auratus 442 488 534 92 

M. johannii 442 488 534 92 

    

c)  

Body 

reflectance 

 

Integral cutoff [nm] 
Width 

[nm] 

= Δλ 
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P. nyererei 

♂ 558 584 618 60 

♀ 537 568 599 62 

L. caeruleus 

♂ 498 532 554 56 

♀ 509 536 556 47 

P. lombardoi 

♂ 470 518 555 85 

♀ 455 489 528 73 

M. auratus 

♂ 463 517 561 98 

♀ 535 559 581 46 

M. johannii 

♂ 443 478 525 82 
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cheek back belly anal fin 
egg 

spots 
other 

MC FC SCD MC FC SCD MC FC SCD MC FC SCD MC MC FC SCD 

P.ny 3 5 32 31 4 43 5 3 75 11 9 40 10 - - - 

L.ca 12 27 16 35 43 4 35 35 21 3 27 95 12 37 38 7 

P.lo 19 21 97 17 20 100 22 16 93 14 16 92 35 - - - 

M.au 9 27 44 6 7 68 14 38 15 15 58 20 49 7 7 59 

M.jo 25 31 94 8 40 32 11 36 97 23 35 92 21 29 39 97 
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