974 research outputs found

    A nonstationary generalization of the Kerr congruence

    Full text link
    Making use of the Kerr theorem for shear-free null congruences and of Newman's representation for a virtual charge ``moving'' in complex space-time, we obtain an axisymmetric time-dependent generalization of the Kerr congruence, with a singular ring uniformly contracting to a point and expanding then to infinity. Electromagnetic and complex eikonal field distributions are naturally associated with the obtained congruence, with electric charge being necesssarily unit (``elementary''). We conjecture that the corresponding solution to the Einstein-Maxwell equations could describe the process of continious transition of the naked ringlike singularitiy into a rotating black hole and vice versa, under a particular current radius of the singular ring.Comment: 6 pages, twocolum

    Pumping current of a Luttinger liquid with finite length

    Get PDF
    We study transport properties in a Tomonaga-Luttinger liquid in the presence of two time-dependent point like weak impurities, taking into account finite-length effects. By employing analytical methods and performing a perturbation theory, we compute the backscattering pumping current (I_bs) in different regimes which can be established in relation to the oscillatory frequency of the impurities and to the frequency related to the length and the renormalized velocity (by the electron-electron interactions) of the charge density modes. We investigate the role played by the spatial position of the impurity potentials. We also show how the previous infinite length results for I_bs are modified by the finite size of the system.Comment: 9 pages, 7 figure

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-

    Get PDF
    We observes a signal for the double charm baryon Xi_cc+ in the charged decay mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ -> Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment (E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events over an expected background estimated by event mixing to be 1.38+/-0.13 events. The Poisson probability that a background fluctuation can produce the apparent signal is less than 6.4E-4. The observed mass of this state is (3518+/-3)MeV/c^2, consistent with the published result. Averaging the two results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak decay mode confirms the previous SELEX suggestion that this state is a double charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+ -> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical method to determine significance of observation. Submitted to PL

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts

    Get PDF
    Air pollution is a risk factor for cardiovascular and Alzheimer's disease (AD). Iron-rich, strongly magnetic, combustion- and friction-derived nanoparticles (CFDNPs) are abundant in particulate air pollution. Metropolitan Mexico City (MMC) young residents have abundant brain CFDNPs associated with AD pathology. We aimed to identify if magnetic CFDNPs are present in urbanites' hearts and associated with cell damage. We used magnetic analysis and transmission electron microscopy (TEM) to identify heart CFDNPs and measured oxidative stress (cellular prion protein, PrPC), and endoplasmic reticulum (ER) stress (glucose regulated protein, GRP78) in 72 subjects age 23.8 ± 9.4y: 63 MMC residents, with Alzheimer Continuum vs 9 controls. Magnetite/maghemite nanoparticles displaying the typical rounded crystal morphologies and fused surface textures of CFDNPs were more abundant in MMC residents' hearts. NPs, ∌2–10 × more abundant in exposed vs controls, were present inside mitochondria in ventricular cardiomyocytes, in ER, at mitochondria-ER contact sites (MERCs), intercalated disks, endothelial and mast cells. Erythrocytes were identified transferring ‘hitchhiking’ NPs to activated endothelium. Magnetic CFDNP concentrations and particle numbers ranged from 0.2 to 1.7â€ŻÎŒg/g and ∌2 to 22 × 109/g, respectively. Co-occurring with cardiomyocyte NPs were abnormal mitochondria and MERCs, dilated ER, and lipofuscin. MMC residents had strong left ventricular PrPC and bi-ventricular GRP78 up-regulation. The health impact of up to ∌22 billion magnetic NPs/g of ventricular tissue are likely reflecting the combination of surface charge, ferrimagnetism, and redox activity, and includes their potential for disruption of the heart's electrical impulse pathways, hyperthermia and alignment and/or rotation in response to magnetic fields. Exposure to solid NPs appears to be directly associated with early and significant cardiac damage. Identification of strongly magnetic CFDNPs in the hearts of children and young adults provides an important novel layer of information for understanding CVD pathogenesis emphasizing the urgent need for prioritization of particulate air pollution control
    • 

    corecore