683 research outputs found

    Across borders: External factors and prior behaviour influence North Pacific albatross associations with fishing vessels

    Get PDF
    Understanding encounters between marine predators and fisheries across national borders and outside national jurisdictions offers new perspectives on unwanted interactions to inform ocean management and predator conservation. Although seabird–fisheries overlap has been documented at many scales, remote identification of vessel encounters has lagged because vessel movement data often are lacking. Here, we reveal albatrosses–fisheries associations throughout the North Pacific Ocean. We identified commercial fishing operations using Global Fishing Watch data and algorithms to detect fishing vessels. We compiled GPS tracks of adult black-footed Phoebastria nigripes and Laysan Phoebastria immutabilis albatrosses, and juvenile short-tailed albatrosses Phoebastria albatrus. We quantified albatrosses-vessel encounters based on the assumed distance that birds perceive a vessel (≤30 km), and associations when birds approached vessels (≤3 km). For each event we quantified bird behaviour, environmental conditions and vessel characteristics and then applied Boosted Regression Tree models to identify drivers and the duration of these associations. In regions of greater fishing effort short-tailed and Laysan albatrosses associated with fishing vessels more frequently. However, fishing method (e.g. longline, trawl) and flag nation did not influence association prevalence nor the duration short-tailed albatrosses attended fishing vessels. Laysan albatrosses were more likely to approach longer vessels. Black-footed albatrosses were the most likely to approach vessels (61.9%), but limited vessel encounters (n = 21) prevented evaluation of meaningful explanatory models for this species of high bycatch concern. Temporal variables (time of day and month) and bird behavioural state helped explain when short-tailed albatrosses were in close proximity to a vessel, but environmental conditions were more important for explaining interaction duration. Laysan albatrosses were more likely to associate with vessels while searching and during the last 60% (by time) of their trips. Our results provide specific species–fisheries insight regarding contributing factors of high-risk associations that could lead to bycatch of albatrosses within national waters and on the high seas. Policy implications. Given the availability of Global Fishing Watch data, our analysis can be applied to other marine predators—if tracking data are available—to identify spatio-temporal patterns, vessel specific attributes and predator behaviours associated with fishing vessel associations, thus enabling predictive modelling and targeted mitigation measures

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico

    Get PDF
    BackgroundExposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures.ObjectiveThis study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk.MethodsWe analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008–2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine.ResultsAfter multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine.ConclusionsModerate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol.CitationMendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111; http://dx.doi.org/10.1289/ehp.140874

    Association Between Variants in Arsenic (+3 Oxidation State) Methyltranserase ( AS3MT ) and Urinary Metabolites of Inorganic Arsenic: Role of Exposure Level

    Get PDF
    Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism—and perhaps with susceptibility to iAs-associated disease—may vary in settings with exposure level

    PHYOX2: a pivotal randomized study of nedosiran in primary hyperoxaluria type 1 or 2

    Get PDF
    Nedosiran is an investigational RNA interference agent designed to inhibit expression of hepatic lactate dehydrogenase, the enzyme thought responsible for the terminal step of oxalate synthesis. Oxalate overproduction is the hallmark of all genetic subtypes of primary hyperoxaluria (PH). In this double-blind, placebo-controlled study, we randomly assigned (2:1) 35 participants with PH1 (n = 29) or PH2 (n = 6) with eGFR ≥30 mL/min/1.73 m2 to subcutaneous nedosiran or placebo once monthly for 6 months. The area under the curve (AUC) of percent reduction from baseline in 24-hour urinary oxalate (Uox) excretion (primary endpoint), between day 90-180, was significantly greater with nedosiran vs placebo (least squares mean [SE], +3507 [788] vs -1664 [1190], respectively; difference, 5172; 95% CI 2929-7414; P < 0.001). A greater proportion of participants receiving nedosiran vs placebo achieved normal or near-normal (<0.60 mmol/24 hours; <1.3 × ULN) Uox excretion on ≥2 consecutive visits starting at day 90 (50% vs 0; P = 0.002); this effect was mirrored in the nedosiran-treated PH1 subgroup (64.7% vs 0; P < 0.001). The PH1 subgroup maintained a sustained Uox reduction while on nedosiran, whereas no consistent effect was seen in the PH2 subgroup. Nedosiran-treated participants with PH1 also showed a significant reduction in plasma oxalate versus placebo (P = 0.017). Nedosiran was generally safe and well tolerated. In the nedosiran arm, the incidence of injection-site reactions was 9% (all mild and self-limiting). In conclusion, participants with PH1 receiving nedosiran had clinically meaningful reductions in Uox, the mediator of kidney damage in PH

    The Substrate-Bound Crystal Structure of a Baeyer–Villiger Monooxygenase Exhibits a Criegee-like Conformation

    Get PDF
    The Baeyer\u2013Villiger monooxygenases (BVMOs) are a family of bacterial flavoproteins that catalyze the synthetically useful Baeyer\u2013Villiger oxidation reaction. This involves the conversion of ketones into esters or cyclic ketones into lactones by introducing an oxygen atom adjacent to the carbonyl group. The BVMOs offer exquisite regio- and enantiospecificity while acting on a wide range of substrates. They use only NADPH and oxygen as cosubstrates, and produce only NADP+ and water as byproducts, making them environmentally attractive for industrial purposes. Here, we report the first crystal structure of a BVMO, cyclohexanone monooxygenase (CHMO) from Rhodococcus sp. HI-31 in complex with its substrate, cyclohexanone, as well as NADP+ and FAD, to 2.4 \uc5 resolution. This structure shows a drastic rotation of the NADP+ cofactor in comparison to previously reported NADP+-bound structures, as the nicotinamide moiety is no longer positioned above the flavin ring. Instead, the substrate, cyclohexanone, is found at this location, in an appropriate position for the formation of the Criegee intermediate. The rotation of NADP+ permits the substrate to gain access to the reactive flavin peroxyanion intermediate while preventing it from diffusing out of the active site. The structure thus reveals the conformation of the enzyme during the key catalytic step. CHMO is proposed to undergo a series of conformational changes to gradually move the substrate from the solvent, via binding in a solvent excluded pocket that dictates the enzyme\u2019s chemospecificity, to a location above the flavin\u2013peroxide adduct where catalysis occurs.Peer reviewed: YesNRC publication: Ye

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    • …
    corecore