125 research outputs found

    Sliding Mode Control and Vision-Based Line Tracking for Quadrotors

    Get PDF
    This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a nonlinear control technique in which a discontinuous control signal is applied to drive the so-called sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in such a way that approaching the sliding surface is beneficial to tracking the reference signals. The advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical model through linearization is avoided, it is robust and adaptive, and works even if the system to be controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue associated with it, namely the chattering phenomena in the control inputs, which is undesirable. This can be tackled by approximating the discontinuous sign function in the control input with a approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling. As with other control methods, Sliding Mode Control requires tuning of the control parameters to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to tune the controller parameters. The findings of this thesis were combined with the design of a line tracking algorithm in order to enter the MathWorks Minidrone Competition.This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a nonlinear control technique in which a discontinuous control signal is applied to drive the so-called sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in such a way that approaching the sliding surface is beneficial to tracking the reference signals. The advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical model through linearization is avoided, it is robust and adaptive, and works even if the system to be controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue associated with it, namely the chattering phenomena in the control inputs, which is undesirable. This can be tackled by approximating the discontinuous sign function in the control input with a approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling. As with other control methods, Sliding Mode Control requires tuning of the control parameters to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to tune the controller parameters. The findings of this thesis were combined with the design of a line tracking algorithm in order to enter the MathWorks Minidrone Competition

    Sliding Mode Control and Vision-Based Line Tracking for Quadrotors

    Get PDF
    This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a nonlinear control technique in which a discontinuous control signal is applied to drive the so-called sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in such a way that approaching the sliding surface is beneficial to tracking the reference signals. The advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical model through linearization is avoided, it is robust and adaptive, and works even if the system to be controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue associated with it, namely the chattering phenomena in the control inputs, which is undesirable. This can be tackled by approximating the discontinuous sign function in the control input with a approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling. As with other control methods, Sliding Mode Control requires tuning of the control parameters to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to tune the controller parameters. The findings of this thesis were combined with the design of a line tracking algorithm in order to enter the MathWorks Minidrone Competition.This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a nonlinear control technique in which a discontinuous control signal is applied to drive the so-called sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in such a way that approaching the sliding surface is beneficial to tracking the reference signals. The advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical model through linearization is avoided, it is robust and adaptive, and works even if the system to be controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue associated with it, namely the chattering phenomena in the control inputs, which is undesirable. This can be tackled by approximating the discontinuous sign function in the control input with a approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling. As with other control methods, Sliding Mode Control requires tuning of the control parameters to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to tune the controller parameters. The findings of this thesis were combined with the design of a line tracking algorithm in order to enter the MathWorks Minidrone Competition

    Sliding Mode Control and Vision-Based Line Tracking for Quadrotors

    Get PDF
    This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a nonlinear control technique in which a discontinuous control signal is applied to drive the so-called sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in such a way that approaching the sliding surface is beneficial to tracking the reference signals. The advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical model through linearization is avoided, it is robust and adaptive, and works even if the system to be controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue associated with it, namely the chattering phenomena in the control inputs, which is undesirable. This can be tackled by approximating the discontinuous sign function in the control input with a approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling. As with other control methods, Sliding Mode Control requires tuning of the control parameters to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to tune the controller parameters. The findings of this thesis were combined with the design of a line tracking algorithm in order to enter the MathWorks Minidrone Competition.This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a nonlinear control technique in which a discontinuous control signal is applied to drive the so-called sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in such a way that approaching the sliding surface is beneficial to tracking the reference signals. The advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical model through linearization is avoided, it is robust and adaptive, and works even if the system to be controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue associated with it, namely the chattering phenomena in the control inputs, which is undesirable. This can be tackled by approximating the discontinuous sign function in the control input with a approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling. As with other control methods, Sliding Mode Control requires tuning of the control parameters to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to tune the controller parameters. The findings of this thesis were combined with the design of a line tracking algorithm in order to enter the MathWorks Minidrone Competition

    Chemical and Enzyme-Assisted Extraction of Fucoidan from two Species of Brown Macroalgae (Ascophyllum nodosum and Saccharina latissima)

    Get PDF
    Poster presentation at the 4th SEAWEED FOR HEALTH conference, Ourense, Galicia, Spain, 24.08.22 - 26.08.22, arranged by DIS Congress Cervice A/S. https://www.seaweed4health.org/.Macroalgae are vital species and are known to produce a wide range of bioactive compounds including polysaccharides, such as fucoidan. Traditionally, these compounds are extracted using hazardous solvents that leads to environmental pollution and waste. Considering this, more sustainable technologies are being investigated as greener alternatives. The main goal of this study was to compare the fucoidan yield of a conventional extraction (CE) with a new, greener extraction method (enzyme-assisted extraction, EAE) from two species commonly found in Norway: Ascophyllum nodosum and Saccharina latissim

    The bromotyrosine derivative Ianthelline isolated from the Arctic marine sponge Stryphnus fortis inhibits marine micro- and macrobiofouling

    Get PDF
    International audienceThe inhibition of marine biofouling by the bromotyrosine derivative ianthelline, isolated from the Arctic marine sponge Stryphnus fortis, is described. All major stages of the fouling process are investigated. The effect of ianthelline on adhesion and growth of marine bacteria and microalgae is tested to investigate its influence on the initial microfouling process comparing with the known marine antifoulant barettin as a reference. Macrofouling is studied via barnacle (Balanus improvisus) settlement assays and blue mussel (Mytilus edulis) phenoloxidase inhibition. Ianthelline is shown to inhibit both marine micro-and macrofoulers with a pronounced effect on marine bacteria (minimum inhibitory concentration (MIC) values 0.1-10 mu g/mL) and barnacle larval settlement (IC50= 3.0 mu g/mL). Moderate effects are recorded on M. edulis (IC50= 45.2 mu g/mL) and microalgae, where growth is more affected than surface adhesion. The effect of ianthelline is also investigated against human pathogenic bacteria. Ianthelline displayed low micromolar MIC values against several bacterial strains, both Gram positive and Gram negative, down to 2.5 mu g/mL. In summary, the effect of ianthelline on 20 different representative marine antifouling organisms and seven human pathogenic bacterial strains is presented

    Serotonin Transporter Polymorphism Modulates N-Back Task Performance and fMRI BOLD Signal Intensity in Healthy Women

    Get PDF
    CONTEXT: Exploring intermediate phenotypes within the human brain's functional and structural circuitry is a promising approach to explain the relative contributions of genetics, complex behaviors and neural mechanisms in the development of major depressive disorder (MDD). The polymorphic region 5-HTTLPR in the serotonin transporter gene (SLC6A4) has been shown to modulate MDD risk, but the neural underpinnings are incompletely understood. OBJECTIVE: 37 right handed healthy women between 21 and 61 years of age were invited to participate in an fMRI modified n-back study. The functional polymorphism 5-HTTLPR located in the promoter region of the SLC6A4 gene was genotyped using polymerase chain reaction (PCR). RESULTS: Short 5-HTTLPR allele carriers showed more blood-oxygen-level-dependent (BOLD) bilateral prefrontal cortex activation in the right [F(2, 30) = 4.8, η(2) = .25, p = .026] and left [F(2, 30) = 4.1, η(2) = .22, p = .015] inferior frontal gyrus pars triangularis with increasing n-back task difficulty relative to long 5-HTTLPR allele carriers. Short 5-HTTLPR allele carriers had inferior task performance on the most difficult n-back condition [F(2, 30) = 4.9, η(2) = .26, p = .014]. CONCLUSIONS: This activation pattern found in healthy at risk individuals resembles an activation pattern that is typically found in patients suffering from acute MDD. Altered function in these areas may reflect intermediate phenotypes and may help explain the increased risk of depression in short 5-HTTLPR allele carriers

    Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic

    Get PDF
    Recent warming in the Barents Sea has led to changes in the spatial distribution of both zooplankton and fish, with boreal communities expanding northwards. A similar northward expansion has been observed in several rorqual species that migrate into northern waters to take advantage of high summer productivity, hence feeding opportunities. Based on ecosystem surveys conducted during August–September in 2014–2017, we investigated the spatial associations among the three rorqual species of blue, fin, and common minke whales, the predatory fish Atlantic cod, and their main prey groups (zooplankton, 0-group fish, Atlantic cod, and capelin) in Arctic Ocean waters to the west and north of Svalbard. During the surveys, whale sightings were recorded by dedicated whale observers on the bridge of the vessel, whereas the distribution and abundance of cod and prey species were assessed using trawling and acoustic methods. Based on existing knowledge on the dive habits of these rorquals, we divided our analyses into two depth regions: the upper 200 m of the water column and waters below 200 m. Since humpback whales were absent in the area in 2016 and 2017, they were not included in the subsequent analyses of spatial association. No association or spatial overlap between fin and blue whales and any of the prey species investigated was found, while associations and overlaps were found between minke whales and zooplankton/0-group fish in the upper 200 m and between minke whales and Atlantic cod at depths below 200 m. A prey detection range of more than 10 km was suggested for minke whales in the upper water layers.publishedVersio

    Meaning in Life for Patients With Severe Dementia: A Qualitative Study of Healthcare Professionals' Interpretations

    Get PDF
    The need for meaning in life is a key aspect of being human, and a central issue in the psychology of religion. Understanding experience of meaning for persons with severe dementia is challenging due to the impairments associated with the illness. Despite these challenges, this article argues that meaning in life is as important for a person with severe dementia as it is for everyone else. This study was conducted in a Norwegian hospital and nursing home context and was part of a research project on meaning in life for persons with severe dementia. The study builds on two other studies which focused on how meaning-making and experience of meaningfulness appeared in patients with severe dementia. By presenting the findings from these two studies for a group of healthcare professionals and introducing them to research on meaning in life, the aim of this study was to explore how healthcare professionals interpret the patients' experience of meaning in life in practise for patients with severe dementia in a hospital and nursing home context, and to highlight its clinical implications. The study was conducted using a qualitative method with exploratory design. The data were collected at a round table conference, a method inspired by a mode of action research called “co-operative inquiry.” Altogether 27 professional healthcarers, from a variety of professions, with high competence in dementia care participated together with six researchers authoring this article. This study revealed that healthcare professionals were constantly dealing with different forms of meaning in their everyday care for people with dementia. The findings also showed clear connexions between understanding of meaning and fundamental aspects of good dementia care. Meaning corresponded well with the principles of person-centred care, and this compatibility allowed the healthcare professionals to associate meaning in life as a perspective into their work without having much prior knowledge or being familiar with the use of this perspective. The study points out that awareness of meaning in life as an integrated perspective in clinical practise will contribute to a broader and enhanced repertoire, and hence to improved dementia care. Facilitating experience of meaning calls for increased resources in personnel and competence in future dementia care.publishedVersio

    Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N terminal, proline-rich region

    Get PDF
    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH2 terminus of the peptide and the fragment arasin 1(1–23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1–23) were shown to be non-toxic to human red blood cells and arasin 1(1–23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1–23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1–23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1–23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1–23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC
    corecore