13 research outputs found
GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board
Land Use Alters the Plant-Derived Carbon and Nitrogen Pools in Terraced Rice Paddies in a Mountain Village
In Japan, terraced paddies in mountain villages are symbolic of the traditional landscape, but they are gradually being abandoned. To compare plant-derived C and N among land uses, we compared adjacent forest floor (FF), agricultural paddy (AP), and post-agricultural paddy (PP) sites. Long-term litter accumulation could explain the significantly higher litter C and belowground biomass C in FF than in AP and PP. The low-density-fraction (LF) soil C was significantly higher in FF than in PP and better reflected land use than the whole-soil C. The AP soil held more N than FF and PP at 20–30 cm, associated with higher LF soil N. Periodic tillage in AP maintains the LF soil N, but N supplied to the surface soil reduced with depth following abandonment. Differences in recycling of organic matter and nutrients among land uses are crucial to plant-derived C and N contents of soil
What Environmental and Personal Factors Determine the Implementation Intensity of Nature-Based Education in Elementary and Lower-Secondary Schools?
As society becomes increasingly urbanized, children are becoming much less likely to experience nature. This progressive disengagement from the natural world, often termed the ‘extinction of experience’, has been viewed both as a key public health issue and one of the most fundamental obstacles to halting global environmental degradation. School education has an important role in mitigating and reversing the ongoing extinction of experience. Here, we examine the role of several factors that determine the implementation intensities of nature-based education by science teachers in the classrooms of both primary and secondary schools. We performed a large-scale questionnaire survey comprising 363 elementary and 259 lower-secondary schoolteachers. Several factors predicted the implementation intensity of nature-based education in schools. The most important predictor was teachers’ levels of nature-relatedness, with nature-orientated teachers being more likely to provide nature-based education in their classes. Levels of teachers’ ecological knowledge, frequency of childhood nature experiences, and greenness within the school were also positively associated with the implementation intensity of education. Our results suggest that, to promote nature-based education in schools, it is important to increase schoolteachers’ nature-relatedness and ecological knowledge, as well as to provide more green spaces within schools
Ionomic Responses of Local Plant Species to Natural Edaphic Mineral Variations
Leaf ionome indicates plant phylogenetic evolution and responses to environmental stress, which is a critical influential factor to the structure of species populations in local edaphic sites. However, little is known about leaf ionomic responses of local plant species to natural edaphic mineral variations. In the present study, all plant species and soil samples from a total of 80 soil sites in Shiozuka Highland were collected for multi-elemental analysis. Ioniomic data of species were used for statistical analysis, representing 24 species and 10 families. Specific preferences to ionomic accumulation in plants were obviously affected by the phylogeny, whereas edaphic impacts were also strong but limited within the phylogenetic preset. Correlations among elements resulted from not only elemental synergy and competition but also the adaptive evolution to withstand environmental stresses. Furthermore, ionomic differences of plant families were mainly derived from non-essential elements. The majority of variations in leaf ionome is undoubtedly regulated by evolutionary factors, but externalities, especially environmental stresses also have an important regulating function for landscape formation, determining that the contributions of each factor to ionomic variations of plant species for adaptation to environmental stress provides a new insight for further research on ionomic responses of ecological speciation to environmental perturbations and their corresponding adaptive evolutions