12 research outputs found

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    On the determination of Darcy permeability coefficients for a microporous tissue scaffold

    No full text
    Structural characterization of porous tissue scaffolds is challenging due to their complexity. Most investigators report the porosity of the material together with an estimate of the mean pore size and the pore size distribution. The usefulness of these measures is limited, especially in predicting the time-dependent permeation characteristics of a biodegradable, cell-seeded scaffold. A potential solution to this problem is to measure the permeability of the matrix and determine the Darcy permeability coefficient. Darcy permeability coefficients of 3.1×10 and 6.3×10 m were measured for air and water, respectively, in microporous polycaprolactone scaffolds by monitoring fluid flow in response to a range of pressure differentials. Permeability coefficients for phosphate-buffered saline (5.3×10 m), glucose (5.7×10 m), and bovine serum albumin (1.8×10 m ) were obtained by monitoring the change in concentration of molecular probes. This approach revealed the efficiency of transport of glucose molecules through the porous material and the existence of protein-scaffold interactions that resulted in protein retention and a reduction in fluid permeation rate. Darcy permeability measurements can provide valuable insights concerning the transport properties of nutrients, metabolites, and polypeptide growth factors in porous tissue engineering scaffolds and a method of quality assurance in scaffold processing

    Isolated, disseminated and circulating tumour cells in prostate cancer

    No full text
    corecore