31 research outputs found

    Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3.

    Get PDF
    The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1''-phosphate (Appr-1''-p). The SARS nsP3 domain readily removes the 1'' phosphate group from Appr-1''-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1''-p

    Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure

    Get PDF
    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath VA/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis VA/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 ± 0.008 ml−1 at baseline vs. 0.010 ± 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 ± 0.005, p < 0.05), with improved VA/Q homogeneity inversely correlated to dive severity. No changes in VA/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 ± 10 ml at baseline vs. 56 ± 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 ± 0.18 l vs. 5.21 ± 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 ± 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 ± 0.31 L to 4.87 ± 0.32, p < 0.05). The degree of VA/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation

    High-latitude dust in the Earth system

    Get PDF
    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (&ge;50&deg;N and &ge;40&deg;S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover &gt;500,000 km2&nbsp;and contribute at least 80&ndash;100 Tg yr&minus;1&nbsp;of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios

    Habitat Composition and Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK Conurbation

    Get PDF
    Background: Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings: We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km 2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of,60 % built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species

    Physiology and medicine of hyperbaric oxygen therapy/ Neuman

    No full text
    xiv, 606 hal. : ill.; 27 cm

    Physiology and medicine of hyperbaric oxygen therapy/ Neuman

    No full text
    xiv, 606 hal. : ill.; 27 cm

    Phase III dose selection of marzeptacog alfa (activated) informed by population pharmacokinetic modeling: A novel hemostatic drug

    No full text
    Abstract Marzeptacog alfa (activated) (MarzAA) is an activated recombinant human FVII (rFVIIa) variant developed as subcutaneous (s.c.) administration for the treatment or prevention of bleeding episodes in patients with hemophilia A (HA) or hemophilia B (HB) with inhibitors and other rare bleeding disorders. Population pharmacokinetic (PK) modeling was applied for dose selection for a pivotal phase III clinical trial evaluating s.c. MarzAA for episodic treatment of spontaneous or traumatic bleeding episodes. The population PK model used MarzAA intravenous and s.c. data from previously completed clinical trials in patients with HA/HB with or without inhibitors. Based on the model, clinical trial simulations were performed to predict MarzAA exposure after different dosing regimens. The exposure target was identified using an exposure‐matching strategy with a wild‐type rFVIIa but adjusting for the difference in potency between the two compounds. Simulations demonstrated a sufficient absorption rate and prolonged exposure following a single 60 μg/kg dose leading to 51% and 70% of the population reaching levels above the target after 3 and 6 h, respectively. According to the phase III protocol, if a second dose was required after 3 h because of a lack of efficacy, 90% of the population was observed to be above target 6 h after the initial dose. The model‐informed drug development approach integrated information from several trials and guided dose selection in the pivotal phase III clinical trial for episodic treatment of an acute bleeding event in individuals with HA or HB with inhibitors without the execution of a phase II trial for that indication

    Model-informed pediatric dose selection of marzeptacog alfa (activated) : An exposure matching strategy

    No full text
    Marzeptacog alfa (activated) (MarzAA) is an activated recombinant human rFVII variant intended for subcutaneous (s.c.) administration to treat or prevent bleeding in individuals with hemophilia A (HA) or B (HB) with inhibitors, and other rare bleeding disorders. The s.c. administration provides benefits over i.v. injections. The objective of the study was to support the first-in-pediatric dose selection for s.c. MarzAA to treat episodic bleeding episodes in children up through 11 years in a registrational phase III trial. Assuming the same exposure-response relationship as in adults, an exposure matching strategy was used with a population pharmacokinetics model. A sensitivity analysis evaluating the impact of doubling in absorption rate and age-dependent allometric exponents on dose selection was performed. Subsequently, the probability of trial success, defined as the number of successful trials for a given pediatric dose divided by the number of simulated trials (n = 1000) was studied. A successful trial was defined as outcome where four, three, or two out of 24 pediatric subjects per trial were allowed to fall outside the adult exposures after s.c. administration of 60 mu g/kg. A dose of 60 mu g/ kg in children with HA/HB was supported by the clinical trial simulations to match exposures in adults. The sensitivity analyses further supported selection of the 60 mu g/kg dose level in all age groups. Moreover, the probability of trial success evaluations given a plausible design confirmed the potential of a 60 mu g/kg dose level. Taken together, this work demonstrates the utility of model-informed drug development and could be helpful for other pediatric development programs for rare diseases
    corecore