151 research outputs found

    MATERNAL RECOGNITION OF PREGNANCY IN THE MARE – A MINI REVIEW

    Get PDF
    A number of features of early embryonic development in equids are unusual or unique; these appear to include the critical but poorly understood mechanism(s) responsible for the ‘maternal recognition of pregnancy’. Maternal recognition of pregnancy is the physiological process by which a developing conceptus signals it presence to the maternal organism to prolong the lifespan of the primary corpus luteum (CL) and thereby ensure the continued supply of progesterone that is essential for embryonic survival and development.  However, it is not yet clear what the primary conceptus signal to ensure CL prolongation in the horse is, and while a number of potential contributors to maternal recognition and the establishment of pregnancy have been proposed, none have been able to satisfactorily fulfill the criteria required of an intrauterine luteostatic or antiluteolytic factor. On the other hand, it is generally accepted that maternal recognition of pregnancy is of critical importance and that failure to either send or receive the signal appropriately is likely to lead to early embryonic death. Indeed, pregnancy loss at or soon after the expected time of maternal pregnancy recognition (days 10-16 of gestation) is a common, but unpredictable (and therefore difficult to prevent), occurrence in clinical practice and a considerable source of financial loss to the breeding industry

    pH-dependent effects of procaine on equine gamete activation

    Get PDF
    Procaine directly triggers pH-dependent cytokinesis in equine oocytes and induces hypermotility in stallion spermatozoa, an important event during capacitation. However, procaine-induced hyperactivated motility is abolished when sperm is washed to remove the procaine prior to sperm-oocyte co-incubation. To understand how procaine exerts its effects, the external Ca2+ and Na+ and weak base activity dependency of procaine-induced hyperactivation in stallion spermatozoa was assessed using computer-assisted sperm analysis. Percoll-washed stallion spermatozoa exposed to Ca2+-depleted (+2 mM EGTA) procaine-supplemented capacitating medium (CM) still demonstrated hyperactivated motility, whereas CM without NaCl or Na+ did not. Both procaine and NH4Cl, another weak base, were shown to trigger a cytoplasmic pH increase (BCECF-acetoxymethyl (AM)), which is primarily induced by a pH rise in acidic cell organelles (Lysosensor green dnd-189), accompanied by hypermotility in stallion sperm. As for procaine, 25 mM NH4Cl also induced oocyte cytokinesis. Interestingly, hyperactivated motility was reliably induced by 2.5-10 mM procaine, whereas a significant cytoplasmic cAMP increase and tail-associated protein tyrosine phosphorylation were only observed at 10 mM. Moreover, 25 mM NH4Cl did not support the latter capacitation characteristics. Additionally, cAMP levels were more than 10x higher in boar than stallion sperm incubated under similar capacitating conditions. Finally, stallion sperm preincubated with 10 mM procaine did not fertilize equine oocytes. In conclusion, 10 mM procaine causes a cytoplasmic and acidic sperm cell organelle pH rise that simultaneously induces hyperactivated motility, increased levels of cAMP and tail-associated protein tyrosine phosphorylation in stallion spermatozoa. However, procaine-induced hypermotility is independent of the cAMP/protein tyrosine phosphorylation pathway

    Расстройства сексуального здоровья при воспалительных заболеваниях внутренних гениталий у женщин

    Get PDF
    При обследовании гинекологических больных выявлены развивающиеся у них разные варианты и формы сексуальной дезадаптации супружеской пары. Показаны их причины, механизмы формирования и клинические проявления.The investigation of gynecological patients revealed development of different variants and forms of sexual dysadaptation of the married couple. Their causes, formation mechanisms and clinical manifestations are shown

    Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy

    Get PDF
    In many species, the insulin-like growth factors (IGF1 and IGF2), their receptors and IGF binding proteins play important roles in preparing the endometrium for implantation, and regulating conceptus growth and development. To determine whether the IGF system may contribute to conceptus-maternal interaction during equine pre-implantation development, we evaluated mRNA expression for IGF system components in conceptuses, and endometrium recovered from pregnant and cycling mares, on days 7, 14, 21 and 28 after ovulation. We also investigated expression of IGF1, IGF2 and their receptors 6 and 11 days after transfer of day 8 embryos to synchronous (day 8) or asynchronous (day 3) recipient mares. Expression of IGF1 and IGF2, IGF1R, IGF2R, INSR and IGFBPs 1, 2, 4 and 5 was evident in endometrium and conceptus membranes during days 7-28. Endometrial IGF2, INSR, IGFBP1 and IGFBP2 expression increased between days 7 and 28 of pregnancy. In conceptus membranes, expression of all IGF system components increased with developmental stage. Immunohistochemistry revealed strong expression of IGF1, IGF2 and IGF1R in both endometrium and conceptus membranes, whereas INSR was highly expressed in endometrium but barely detectable in the conceptus. Finally, a negatively asynchronous uterine environment retarded IGF1, IGF2 and INSR expression in the conceptus, whereas in the endometrium only INSR expression was altered by asynchrony. The presence of IGFs, their receptors and IGFBPs in the endometrium and conceptus during early equine pregnancy, and down-regulation in the conceptus following asynchronous embryo transfer, suggest a role in conceptus-maternal communication during the preparation for implantation

    A stallion spermatozoon's journey through the mare's genital tract: In vivo and in vitro aspects of sperm capacitation

    Get PDF
    Conventional in vitro fertilization is not efficacious when working with equine gametes. Although stallion spermatozoa bind to the zona pellucida in vitro, these gametes fail to initiate the acrosome reaction in the vicinity of the oocyte and cannot, therefore, penetrate into the perivitelline space. Failure of sperm penetration most likely relates to the absence of optimized in vitro fertilization media containing molecules essential to support stallion sperm capacitation. In vivo, the female reproductive tract, especially the oviductal lumen, provides an environmental milieu that appropriately regulates interactions between the gametes and promotes fertilization. Identifying these 'fertilization supporting factors' would be a great contribution for development of equine in vitro fertilization media. In this review, a description of the current understanding of the interactions stallion spermatozoa undergo during passage through the female genital tract, and related specific molecular changes that occur at the sperm plasma membrane is provided. Understanding these molecular changes may hold essential clues to achieving successful in vitro fertilization with equine gametes

    In Vitro-Produced Equine Blastocysts Exhibit Greater Dispersal and Intermingling of Inner Cell Mass Cells than In Vivo Embryos

    Get PDF
    In vitro production (IVP) of equine embryos is increasingly popular in clinical practice but suffers from higher incidences of early embryonic loss and monozygotic twin development than transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM); (2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture environment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2 (EPI) and GATA-6 (PE). The numbers and distribution of cells expressing the three lineage markers were evaluated in day 7 IVD early blastocysts ( n = 3) and blastocysts ( n = 3), and in IVP embryos first identified as blastocysts after 7 (fast development, n = 5) or 9 (slow development, n = 9) days. Furthermore, day 7 IVP blastocysts were examined after additional culture for 2 days either in vitro ( n = 5) or in vivo (after transfer into recipient mares, n = 3). In IVD early blastocysts, SOX-2 positive cells were encircled by GATA-6 positive cells in the ICM, with SOX-2 co-expression in some presumed PE cells. In IVD blastocysts, SOX-2 expression was exclusive to the compacted presumptive EPI, while GATA-6 and CDX-2 expression were consistent with PE and TE specification, respectively. In IVP blastocysts, SOX-2 and GATA-6 positive cells were intermingled and relatively dispersed, and co-expression of SOX-2 or GATA-6 was evident in some CDX-2 positive TE cells. IVP blastocysts had lower TE and total cell numbers than IVD blastocysts and displayed larger mean inter-EPI cell distances; these features were more pronounced in slower-developing IVP blastocysts. Transferring IVP blastocysts into recipient mares led to the compaction of SOX-2 positive cells into a presumptive EPI, whereas extended in vitro culture did not. In conclusion, IVP equine embryos have a poorly compacted ICM with intermingled EPI and PE cells; features accentuated in slowly developing embryos but remedied by transfer to a recipient mare

    Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    Get PDF
    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell

    Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    Get PDF
    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue
    corecore