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Abstract: In vitro production (IVP) of equine embryos is increasingly popular in clinical practice but
suffers from higher incidences of early embryonic loss and monozygotic twin development than
transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by
two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM);
(2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined
the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture envi-
ronment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2
(EPI) and GATA-6 (PE). The numbers and distribution of cells expressing the three lineage markers
were evaluated in day 7 IVD early blastocysts (n = 3) and blastocysts (n = 3), and in IVP embryos
first identified as blastocysts after 7 (fast development, n = 5) or 9 (slow development, n = 9) days.
Furthermore, day 7 IVP blastocysts were examined after additional culture for 2 days either in vitro
(n = 5) or in vivo (after transfer into recipient mares, n = 3). In IVD early blastocysts, SOX-2 positive
cells were encircled by GATA-6 positive cells in the ICM, with SOX-2 co-expression in some presumed
PE cells. In IVD blastocysts, SOX-2 expression was exclusive to the compacted presumptive EPI,
while GATA-6 and CDX-2 expression were consistent with PE and TE specification, respectively. In
IVP blastocysts, SOX-2 and GATA-6 positive cells were intermingled and relatively dispersed, and
co-expression of SOX-2 or GATA-6 was evident in some CDX-2 positive TE cells. IVP blastocysts
had lower TE and total cell numbers than IVD blastocysts and displayed larger mean inter-EPI cell
distances; these features were more pronounced in slower-developing IVP blastocysts. Transferring
IVP blastocysts into recipient mares led to the compaction of SOX-2 positive cells into a presumptive
EPI, whereas extended in vitro culture did not. In conclusion, IVP equine embryos have a poorly
compacted ICM with intermingled EPI and PE cells; features accentuated in slowly developing
embryos but remedied by transfer to a recipient mare.

Keywords: equine; blastocysts; in vitro embryo production; ICM; cell lineage segregation

1. Introduction

Coincident with blastocyst formation, a mammalian embryo undergoes two cell
lineage segregations; the first is characterized by differentiation of the outer cells into
trophectoderm (TE), which form the outer cell layer of the blastocyst and are subsequently
restricted to the placenta, whereas the remaining cells compact into the inner cell mass
(ICM) [1,2]. During the second cell lineage segregation, the ICM differentiates into the
epiblast (EPI) and primitive endoderm (PE). The pluripotent cells of the EPI give rise
to the embryo proper, whereas the PE cells migrate to line the inside of the trophecto-
derm, thereby completing the formation of the yolk sac, the bilaminar primitive nutrient
absorbing structure (primitive placenta) [1,2]. The process of cell lineage segregation in
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embryos involves differential expression of transcriptional regulators and, as a result, the
different cell types, e.g., TE, EPI, and PE, can be distinguished by differential expression
of transcription factors; for example, TE cells express CDX-2 (caudal-type homeodomain
protein) and GATA-3 (GATA-3 binding protein), whereas EPI cells specifically express
SOX-2 (SRY (Sex Determining Region Y)-box 2) and NANOG (homeobox protein nanog)
and PE cells express GATA-6 (GATA-6 binding protein) [3]. Although all mammalian
embryos are thought to undergo the same two cell lineage segregations, and the roles of
some critical transcription factors appear to be conserved [4], there are species-specific
differences in the roles of certain transcription factors, the spatial pattern of cell lineage
specification, and in the developmental stage at which cell lineage segregation takes place;
for example, it occurs at an earlier embryonic age in mice (day 4.5, [5]) than in human
(day 7, [6]), cattle (day 8, [7]), or pig (day 7, [8]) embryos. The process of cell lineage
segregation has not been studied in depth in equine embryos after in vivo development,
although Enders [9] suggested that PE cells migrated directly to line the TE at around day
8 without first participating in the formation of an obvious ICM. Aspects of cell lineage
segregation have been examined more extensively in the context of the pluripotency of
embryonic stem cells [10,11] or for in vitro produced (IVP) embryos, although these studies
either lacked a marker to positively identify the pluripotent EPI cells [12] or focused almost
entirely on EPI specification (using SOX-2) [13]. It has been shown that the pluripotency
marker OCT-4/POU5F1 is unreliable for detecting equine EPI cells because it is not solely
restricted to the ICM of horse embryos [11,12]. Furthermore, SOX-2 appears to be a better
marker than OCT-4 because it specifically stains the EPI in IVP horse embryos [13]; CDX-2
and GATA-6 seem to be well conserved across species [4]. To better investigate possible
differences in the timing and spatial distribution of cell lineage segregation between equine
IVP and in vivo derived (IVD) embryos, it is imperative to use markers for each of the three
cell lineages simultaneously.

Although the likelihood of pregnancy after the transfer of fresh [14] or
frozen-thawed [15] equine IVP blastocysts exceeds 70%, this is approximately 15 to 20%
lower than after the transfer of fresh IVD blastocysts [16], suggesting that the develop-
mental competence of IVP embryos is slightly lower than that of embryos that develop
in vivo. In addition, the speed of in vitro embryo development affects embryo quality
since day 7 or day 8 IVP blastocysts are more likely to yield a viable pregnancy than day 9
IVP blastocysts [15]. Although more slowly developing IVP embryos are, therefore, likely
to be compromised in some way, it is not yet clear what the most important aberrations
are [17]. In fact, assessing the quality of IVP equine embryos is challenging because they
do not have a grossly visible blastocyst cavity, and the ICM is not readily appreciated [18].
However, it is possible that, while slowly developing IVP embryos do not have lower total
cell numbers [17], they may have reduced numbers of cells in the ICM or EPI and, as a
result, may fail to develop an embryo proper; this could contribute to lower pregnancy and
higher early embryonic loss rates. Furthermore, even though in vitro culture conditions for
equine embryos have improved markedly over time, as indicated by increased blastocyst
production rates in clinical programs [19], they are still unable to completely mimic in vivo
conditions. The importance of the in vivo environment for ‘normal’ specification of the
different cell lineages was indicated by the loss of the unexpected OCT-4/POU5F1 staining
of the TE cells of equine IVP embryos following a 2–3 period in the uterus of a mare [20].
In short, the effects of in vitro culture on the timing and pattern of early equine embryo
cell fate decisions have not been examined in detail, despite their potential implications for
subsequent embryo developmental competence. The aim of this study was to examine the
influence of the conditions in which the embryo developed (IVD versus IVP), developmen-
tal stage (early blastocyst versus blastocyst: IVD), speed of in vitro embryo development
(fast versus slow development: IVP) and environment (in vitro versus in vivo) for extended
culture of IVP blastocysts on the pattern of expression of markers for the three cell lineages
(CDX-2 for TE; SOX-2 for EPI; and GATA-6 for PE) in equine embryos.
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2. Results
2.1. Expression of Cell Lineage Markers in IVD Early Blastocysts (n = 3) and Blastocysts (n = 3)

CDX-2 expression was exclusive to the TE of both IVD early blastocysts (Figure 1(A1))
and blastocysts (Figure 1(B1)), with no expression evident in cells positioned within the
light microscopically visible ICM. SOX-2 was expressed not only in the ICM but was also
co-expressed with CDX-2 in the TE of early blastocysts (Figure 1(A2)). This co-expression of
SOX-2 in CDX-2 positive TE cells was almost completely lost in later blastocysts. In the later
blastocysts, SOX-2 was expressed strongly in the presumed EPI (Figure 1(B2,B4)). GATA-6
expression was visible in cells within the ICM of early blastocysts and also co-expressed
with SOX-2 at the periphery of the ICM (Figure 1(A3,A4)). This co-expression of SOX-2
and GATA-6 was no longer evident in later blastocysts, where GATA-6 was expressed
exclusively in the PE (Figure 1(B3,B4)) and SOX-2 expression was only detected in the EPI
(Figure 1(B2,B4)). In IVD blastocysts, the PE was evident as a single cell layer lining the
inner surface of the TE (Figure 1(B3,B4)).
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distribution (Figure 2(A2,C2)) and the number of SOX-2 positive cells (Figure 2(A4–D4)). 
Indeed, SOX-2-positive cells were scattered around the entire ICM, which extended over 
approximately half of the central ‘cavity’ of IVP blastocysts. In addition, SOX-2 was co-
expressed either weakly (Figure 2(B2–D2)) or strongly (Figure 2(A2)) with CDX-2 in the 
TE of three of five day 7 IVP blastocysts, although it was restricted to the presumptive EPI 
in the other two (Figure 2(B2,B4,C2,C4)). The distribution of GATA-6 expression was also 
variable in IVP blastocysts, although it was restricted to the PE of one of 5 embryos (Figure 
2(B3,B4,C3,C4)), there was some co-expression of GATA-6 and CDX-2 in the TE of the 
remaining four (Figure 2(A3,C3,D3)). 

Figure 1. Expression of cell lineage markers (CDX-2, SOX-2, and GATA-6) in in vivo derived early
blastocysts and blastocysts. (A,B) DNA staining of all the nuclei: (A1,B1) expression of CDX-2,
(A2,B2) expression of SOX-2, (A3,B3) expression of GATA-6, (A4,B4) composite of CDX-2, SOX-2 and
GATA-6, (A5,B5) DIC images of the respective early blastocyst and blastocyst. Scale bar = 50 µm.

2.2. Expression of Cell Lineage Markers in IVP Day 7 Blastocysts (n = 5)

CDX-2 was consistently expressed only in the TE of IVP blastocysts. (Figure 2(A1–D1)). By
contrast, SOX-2 expression varied between IVP blastocysts with regard to exact distribution
(Figure 2(A2,C2)) and the number of SOX-2 positive cells (Figure 2(A4–D4)). Indeed, SOX-
2-positive cells were scattered around the entire ICM, which extended over approximately
half of the central ‘cavity’ of IVP blastocysts. In addition, SOX-2 was co-expressed either
weakly (Figure 2(B2–D2)) or strongly (Figure 2(A2)) with CDX-2 in the TE of three of five
day 7 IVP blastocysts, although it was restricted to the presumptive EPI in the other two
(Figure 2(B2,B4,C2,C4)). The distribution of GATA-6 expression was also variable in IVP
blastocysts, although it was restricted to the PE of one of 5 embryos (Figure 2(B3,B4,C3,C4)),
there was some co-expression of GATA-6 and CDX-2 in the TE of the remaining four
(Figure 2(A3,C3,D3)).
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Figure 2. Expression of cell lineage markers (CDX-2, SOX-2, and GATA-6) in day 7 in vitro produced
blastocysts. (A–D) DNA staining of all the nuclei. (A1–D1) Expression of CDX-2. (A2–D2) Expression
of SOX-2. (A3–D3) Expression of GATA-6. (A4–D4) Composite of CDX-2, SOX-2 and GATA-6.
(A5–D5) DIC images of the respective in vitro blastocysts. Scale bar = 50 µm.

2.3. Differences in Embryo Size, Total Cell Number and TE, PE, and EPI Allocation between Day 7
IVD (n = 3) and IVP (n = 5) Blastocysts

Although embryo size did not differ markedly between day 7 IVD (210 ± 19 µm) and
IVP blastocysts (184 ± 9 µm), the total cell number was significantly higher in the IVD
blastocysts (486 ± 81 versus 317 ± 21; IVD versus IVP) (Figure 3A). At the same time,
the total number of TE cells was also higher in IVD (395 ± 54) than in IVP blastocysts
(264 ± 34) (Figure 3B); the percentage of cells classified as TE did not differ between
them (82 ± 3% and 83 ± 5%, respectively). In contrast, neither the number nor the
percentage of PE cells differed between IVD (52 ± 23, 10 ± 3%; respectively) and IVP (38 ± 8,
12 ± 3%) blastocysts. Similarly, while the number of EPI cells tended (p = 0.05) to be higher
in IVD (34 ± 10) than in IVP blastocysts (14 ± 7), the percentages of EPI cells did not differ
significantly (7 ± 2% and 4 ± 2%, respectively). On the other hand, the mean inter-epiblast
cell distance was significantly higher in IVP blastocysts (52 ± 6 µm) than in IVD blastocysts
(35 ± 3 µm) (Figure 3C).
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superscripts differ significantly, p < 0.05.

2.4. Differences between Day 7 (Fast Developing, n = 5) and Day 9 (Slow Developing, n = 9)
IVP Blastocysts

As previously shown for day 7 IVP blastocysts, CDX-2 expression was exclusive to the
TE of IVP embryos that only reached the blastocyst stage after 9 days (Figure 4(A1–D1)).
The SOX-2 (Figure 4(C2,D2)) and GATA-6 (Figure 4(C3,D3)) positive cells in day 9 IVP blas-
tocysts were spread over an even wider area than in day 7 IVP blastocysts (Figure 4(A2,B2)
and Figure 4(A3,B3), respectively). SOX-2 or GATA-6 were co-expressed with CDX-2 in
the TE of all day 9 IVP blastocysts (5/9 and 9/9, respectively: Figure 4(C2,C4,D4)), and
most day 7 IVP blastocysts (3/5 and 4/5, respectively: Figure 4(A2,A4)). There were
no significant differences in embryo size (184 ± 9 vs. 200 ± 31 µm), total cell number
(317 ± 31 vs. 377 ± 104), total TE cell number (264 ± 34 vs. 285 ± 101), or total EPI
cell number (14 ± 7 vs. 18 ± 6) between day 7 (fast-developing) and day 9 (slow de-
veloping) IVP blastocysts. Similarly, there were no differences in the percentages of TE
(83 ± 5% vs. 75 ± 10%) and EPI (4 ± 2% vs. 6 ± 3%) cells between day 7 (fast developing)
and day 9 (slow developing) blastocysts. By contrast, the total PE cell number was signifi-
cantly higher in day 9 (71 ± 33) than in day 7 (38 ± 9) IVP blastocysts (Figure 5A), although
the percentage of PE cells did not differ between them (19 ± 10% vs. 12 ± 3%, respectively).
However, the inter-epiblast cell distance was higher in day 9 (68 ± 9 µm, slow developing)
than in day 7 (52 ± 6 µm, fast-developing) IVP blastocysts (Figure 5A).

2.5. Effect of Two Days Extra Culture of Day 7 IVP Blastocysts In Vitro (n = 5) or In Vivo (n = 3)

Additional culture did not affect the expression of CDX-2, which remained restricted
to the TE (Figure 6(A1–E1)). However, whereas 2 days of additional culture in vitro had
no effect on the distribution of SOX-2 positive cells (scattered: Figure 6(A2,B2)), after
2 days in the uterus of a mare the SOX-2 cells had compacted in two out of three embryos
(Figure 6(C2,D2)). In the third IVP embryo, collected 2 days after transfer to a mare’s
uterus, no SOX-2 positive cells were detected (Figure 6(E2)). After 2 days of additional
in vitro culture, SOX-2 positive cells were still present in the TE, whereas SOX-2 staining
had disappeared from the TE after 2 days of in vivo culture. As with SOX-2, GATA-6
expression was still present in the TE of day 7 IVP blastocysts cultured for an additional
2 days in vitro (Figure 6(A3,B3)). After 2 days of in vivo development, the distribution
of GATA-6 expression was variable (Figure 6(C3,D3)), but it was less evident in TE cells.
Embryo size (404 ± 20 µm), total cell number (997 ± 77), total TE cell number (827 ± 47),
and total PE cell number (103 ± 11) were significantly higher in IVP embryos collected
2 days after transfer to a mare’s uterus than in IVP embryos cultured in vitro for 2 days
(186 ± 26 µm, 350 ± 133, 265 ± 100 and 16 ± 9, respectively). Total EPI cell number tended
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to be higher (p = 0.09) in IVP embryos after 2 days in a mare’s uterus than in an in vitro
culture (40 ± 13 vs. 11 ± 6, respectively).
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3. Discussion

This study compared the expression of markers for the first three cell lineages in IVD
and IVP equine embryos. In IVD horse early blastocysts, the first cell lineage segregation
(TE versus ICM) had been completed, and the second cell lineage differentiation (EPI versus
PE) had been initiated. By the blastocyst stage, the second cell lineage decision had also
been completed, and the EPI cells were much more compacted than at the early blastocyst
stage. In comparison, IVP blastocysts lagged behind in development, as evidenced by
a lower cell number, a less compacted ICM, and, most obviously, because the second
lineage differentiation was not complete in 3/5 of the day 7 IVP blastocysts. Moreover, the
EPI cells in IVP blastocysts were intermingled with PE cells in a poorly compacted ICM,
reminiscent of the early stages of EPI:PE segregation in other species [21]. In IVP embryos
that were slow to reach the blastocyst stage (9 rather than 7 days), compaction of the ICM
and EPI was even more delayed. During extended culture, the environment (in vivo versus
in vitro) had a marked impact on subsequent embryo development and cell differentiation.
Day 7 IVP blastocysts cultured in vitro for 2 more days showed little or no progress in
EPI organization and compaction, whereas IVP blastocysts transferred to the uterus of a
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synchronized mare for 2 days were more developed (higher total cell number) and showed
completion (or failure in one case) of the second cell lineage segregation (organization and
compaction of EPI cells). These observations extend those of Choi et al. [12], although
including a positive marker for EPI cells did allow a subtle refinement of their conclusion
that the EPI and PE cells in equine embryos do not first aggregate together to form an ICM.
In our study, in both IVD early blastocysts and IVP blastocysts, EPI and PE cells clustered
together in an apparent ICM before the PE migrated to line the rest of the blastocoele cavity;
the difference presumably arising in part from subtle differences in embryo developmental
stage at the time of staining.

In mouse embryos, the first cell lineage segregation is considered to be completed by
the morula stage, when CDX-2 is expressed solely by the TE [22]. In horse embryos, CDX-2
expression was already restricted to the TE of IVD early blastocysts, indicating that the first
cell lineage segregation is completed at an earlier stage, e.g., the morula stage, and possibly
prior to descent into the uterus. The second cell lineage division had not been completed
in IVD early blastocysts, as indicated by the co-expression of SOX-2 and GATA-6 at the
periphery of the ICM. In IVD early blastocysts, SOX-2 was co-expressed with CDX-2 in
the TE, a phenomenon also reported in mouse early blastocysts, where it was suggested
that SOX-2 co-expression performs a role in the establishment of the TE lineage [23,24].
Indeed, knocking out SOX-2 in two-cell stage mouse embryos caused embryonic arrest
characterized by the absence of CDX-2 expression [23]. In this respect, SOX-2 might also
perform a role in initial TE specification during the early development of horse embryos.

Early differentiation and separation of EPI and PE were observed in in vivo horse early
blastocysts in that GATA-6 positive cells encircled the SOX-2 positive cells. This cellular
organization contrasted to mouse early blastocysts, in which EPI cells are intermingled with
PE cells, often referred to as a ‘salt and pepper’ expression pattern [25]; the intermingling
of PE and EPI we observed in IVP equine blastocysts therefore, either emphasizes that they
are at an earlier stage of development, or suggests a different (aberrant) spatial pattern
of the second cell fate decision. In horse IVD blastocysts, the second cell lineage had
been completed since the three cell lineage markers (CDX-2, GATA-6, and SOX-2) were
expressed separately in the presumptive TE, PE, and EPI cells, respectively. This distinct
expression of cell lineage markers in TE, PE, and EPI at the blastocyst stage is similar
to other species, including man, cow, and pig [26], but is different to mouse [23,27] and
goat [28,29] blastocysts (co-expression of SOX-2 with CDX-2 in the TE). Interestingly, a
single cell layer of PE could be seen to line the inner surface of the TE, completing the yolk
sac, as early as day 7 in IVD equine blastocysts, slightly earlier than previously observed by
electron microscopy [9] and earlier than described in other large animal species including
man, cow, and pig (day 10) [4,26].

The dispersal of EPI cells, measurable as a greater mean inter-EPI cell distance, ob-
served in IVP compared to IVD equine blastocysts (although total and relative EPI cell
number were not different) suggests an impaired, or delayed, organization and compaction
of the EPI in IVP blastocysts. This delay in EPI compaction might contribute to the reduced
viability and developmental competence of IVP embryos compared to IVD embryos, as
evidenced by the 15 to 20% lower pregnancy rate after transfer [30]. One possible impact of
delayed EPI compaction may have been indicated by the failure to find any SOX-2 positive
cells in one of the 3 IVP embryos recovered 2 days after transfer to a mare’s uterus; as
will be discussed below, this embryo would almost certainly be non-viable. Similarly, IVP
bovine blastocysts have been reported to suffer a higher incidence of defective embryonic
lineage specification (particularly affecting the EPI), which was proposed to contribute to
the 10–40% lower likelihood of pregnancy after transferring IVP than IVD bovine embryos
to recipient cows [31–33].

In addition to in vitro production per se, the second cell lineage segregation appears
to be influenced by, or aberration in this segregation may contribute to, a slower rate of
in vitro development because the SOX-2 positive cells in blastocysts that took 9 days to
reach the blastocyst stage were even more scattered and the EPI less compact (higher
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inter-EPI cell distance) than in embryos that reached the blastocyst stage in 7 days. Even
though the total and relative number of SOX-2 positive cells did not differ between day 9
(slow developing) and day 7 (fast developing) IVP blastocysts, it is possible that a delay in
accumulating or specifying sufficient ICM and EPI cells, or indeed of specifying TE cells,
explains the delayed formation of an appreciable blastocoele and TE layer, and contributes
to the lower pregnancy rates after the transfer of slowly developing (day 9 or later) IVP
blastocysts [15]. Moreover, it is tempting to speculate that the dispersed and uncompacted
nature of the EPI in IVP blastocysts may predispose to the splitting of the EPI cells into two
separate populations within the embryo to form two separate EPIs. If so, this could explain
the heightened risk of monochorionic-monozygotic twins observed after the transfer of
IVP blastocysts (approximately 1%) [34], a phenomenon that is encountered only rarely for
embryos that develop to the blastocyst stage in vivo [35].

The importance of (micro)environmental cues for equine embryonic cell lineage speci-
fication was demonstrated by the marked effects of culturing IVP embryos for an additional
2 days in a mare’s uterus, compared to a Petri dish. Day 7 IVP blastocysts cultured in vivo
for 2 days showed thinning of the zona, development of a capsule, and a marked increase
in total cell number (997 ± 77) accompanied by compaction of the ICM and/or EPI. By con-
trast, IVP blastocysts cultured for an additional 2 days in vitro showed few signs of further
development, with only a modest increase in total cell number, no obvious compaction of
the EPI and incomplete spatial segregation of SOX-2 and GATA-6 positive cells in the ICM.
In this regard, uterine factors which promote embryo development and differentiation
events, including EPI compaction, are presumably absent in in vitro culture. In the cow,
embryokines, such as insulin-like growth factor 1 and colony-stimulating factor 2, have
been proposed to be key uterine factors that modulate and promote the development of
the embryo to later blastocyst stages [36] and may perform a role in EPI specification and
organization. In this respect, it would be interesting to investigate whether co-culture
with endometrial cells, tissues, or fluids or supplementation of in vitro culture systems
with putative embryokines would improve the in vitro development of equine embryos.
Interestingly, as mentioned previously, SOX-2 expression was completely absent in one of
the day 7 IVP blastocysts cultured in vivo for 2 days, although expression of CDX-2 and
GATA-6 was present. The authors hypothesize that this is an IVP embryo that has failed
to specify an EPI. Transfer of such an embryo into the uterus of a mare could potentially
result in a pregnancy, but presumably, a vesicle that would fail to form an embryo proper,
i.e., an anembryonic vesicle [37]. In this respect, a significant percentage (26%) of OPU-ICSI
pregnancies lost after the first positive pregnancy scan are lost before the formation of the
embryo proper and/or recorded as anembryonic vesicles [38].

4. Materials and Methods
4.1. In Vivo Derived Embryos: Collection, Initial Assessment, and Fixing

Animal procedures were approved by Utrecht University’s Animal Experimentation
Committee (permit number: 1080020185164). In vivo embryos (n = 6) were recovered by
flushing the uterus of donor mares with lactated Ringer’s solution (Baxter Nederland BV,
Utrecht, The Netherlands), as described by Stout [39], 9 days after induction of ovula-
tion with buserelin acetate (0.33 µg/kg Suprefact®, IM: CHEPLAPHARM, Greifswald,
Germany). One day after induction of ovulation, when the mares were in estrus with a
large preovulatory follicle, they had been inseminated with semen from a fertile stallion;
ovulation was confirmed by the emptying of the preovulatory follicle and replacement
by a corpus hemorrhagicum which was detected by transrectal ultrasonography on the
day after insemination. Recovered embryos were classified as early blastocysts (n = 3) or
blastocysts (n = 3), as described by McCue [40]; early blastocysts had a thick zona pellu-
cida, small blastocoel cavity, and a barely visible capsule, whereas blastocysts had a large
blastocoel, a distinct ICM and a clearly discernible capsule between the trophectoderm and
an attenuated zona pellucida. All embryos were fixed in 2% paraformaldehyde for 30 min
at room temperature (RT; 19–21 ◦C), washed twice in PBST (PBS containing 0.1% Triton
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X100; Sigma-Aldrich, Zwijndrecht, The Netherlands) for 5 min, then stored in PBST at 4 ◦C
until immunostaining.

4.2. In Vitro Produced Embryos: Production, Culture, and Fixing

In vitro embryos were produced as described by Lazzari et al. [41]. Briefly, immature
oocytes were collected by transvaginal aspiration of antral follicles ≥ 5 mm or by scraping
follicles from post-mortem ovaries, and shipped in H-SOF (HEPES buffered synthetic
oviductal fluid [42]) to an assisted reproduction laboratory for in vitro maturation, intracy-
toplasmic sperm injection, and in vitro culture to the blastocyst stage. The time required
(day of ICSI = day 0) for in vitro embryos to reach the blastocyst stage was recorded. All
IVP blastocysts were slow-frozen and thawed as described by Lazzari et al. [41]; after
thawing, embryos were treated with pronase (0.5% in PBS) to remove the zona pellucida
before 24 h culture in a modified SOF-IVC medium supplemented with bovine serum
albumin (BSA) and amino acids [43], and containing 10% of a mixture (1:1) of fetal calf
serum and serum replacement (KnockOut Serum Replacement, Life Technologies, Carls-
bad, CA, USA) at 38.5 ◦C in an atmosphere containing 5% CO2 and 5% O2. Five day 7
IVP blastocysts (fast development) were fixed to examine the expression of cell lineage
markers, as were nine day 9 IVP blastocysts (slow development), to investigate whether the
speed of in vitro development was associated with a different pattern of cell lineage marker
expression. Additionally, day 7 IVP blastocysts were either cultured in vitro (n = 5, without
zona pellucida) or in vivo (n = 3, with zona pellucida) for two more days. In vitro culture
was carried out as described above. For in vivo culture, three day 7 IVP blastocysts were
transferred non-surgically into the uterus of recipient mares on day 4 after ovulation and
recovered from the uterus by uterine lavage, as described above, 2 days later. All embryos
were fixed and stored as described above until further processing.

4.3. Immunostaining

Fixed embryos were washed in fresh PBST, then permeabilized by incubating in PBS
containing 1% Triton X100 for 1 h at RT. Non-specific binding was blocked by incubating the
permeabilized embryos in PBST supplemented with 3% bovine serum albumin (BSA: Sigma-
Aldrich) and 5% normal goat serum (NGS; Thermo Fisher Scientific, Carlsbad, CA, USA) for
1 h at RT. Next, the embryos were incubated with solutions of PBST (supplemented with 3%
BSA and 5% NGS) containing the primary antibodies (1:500 dilution of mouse monoclonal
antibody against CDX-2; M4392A-SUC, BiogeneX, Fremont, CA, USA; and 1:250 dilution
of rabbit polyclonal antibody against GATA-6; H-92, Santa Cruz Biotechnology, Inc., Dallas,
TX, USA) overnight at 4 ◦C in a humidified chamber. After washing in PBST supplemented
with 3% BSA three times for 10 min, the embryos were incubated with the secondary
antibodies (1:250 Alexa Fluor 568-goat anti-mouse, A11031 Mol Probes, Eugene, OR, USA;
1:250 Alexa Fluor 647-goat anti-rabbit, A21244 LifeTech, Carlsbad, CA, USA) in PBST
supplemented with 3% BSA and 5% NGS for 2 h at RT. After washing three more times in
PBST supplemented with 3% BSA for 10 min, the embryos were incubated with normal
mouse IgG1 (1:250 SC-3877, Santa Cruz) in PBST supplemented with 3% BSA and 5% NGS
for 2 h at RT. Following three 5 min washes as described above, embryos were incubated
with SOX-2 (1:250 dilution of mouse monoclonal antibody against SOX-2, E-4, SC-365823
conjugated with Alexa Fluor 488, Santa Cruz) and Hoechst 33342 (1:500, B2261; Sigma-
Aldrich) in PBST supplemented with 3% BSA and 5% NGS for 2 h at RT. Finally, the
embryos were mounted in a 5 µL droplet of antifade (Vectashield; Vector Laboratories,
Newark, CA, USA) on glass slides (Superfrost Plus; Menzel, Braunschweig, Germany).

4.4. Confocal Imaging and Image Analysis

A Nikon A1R/STORM confocal microscope (Nikon Instruments Inc., Tokyo, Japan)
equipped with four lasers (405 nm, Blue; 488 nm, Green; 561 nm, Red; and 647 nm, Magenta)
was used to assess the expression of Hoechst 33342 (all nuclei), SOX-2 (EPI), CDX-2 (TE),
and GATA-6 (PE). The dichroic filter was a quad line laser filter (405/488/561/640), and the
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emission filters were 482/32, 515/30, 595/50, and 700/75 for Hoechst 33342, Alexa-Fluor
488TM, Alexa Fluor 568TM, and Alexa Fluor 647TM, respectively. Z-stacks (1.1 µm thickness
with top and bottom acquisition defined manually) were acquired using a 20×/0.75 NA
(numerical aperture) air immersion lens (1000 µm working distance). The pinhole size
was 26.82 µm, and images (512 × 512 pixels) were collected in the bidirectional mode
with a pixel size of 0.65 µm. Image analysis was performed using Fiji Image J2 and Imaris
software version 8.2 (BitPlane AG, Zurich, Switzerland). Individual image slices were
processed for brightness and contrast using Fiji image J for graphical illustrations. All
blastocysts were measured using Imaris (mean of two measurements from trophoblast
perimeter to trophoblast perimeter). The total cell number (Hoechst 33342 positive nuclei),
and total numbers of presumed TE (CDX-2 positive cells), PE (GATA-6 positive cells),
and EPI (SOX-2 positive cells) were also counted using the Imaris object spot detection
module. Objects were filtered to contain mean intensities between minimum and maximum
intensities (98–1277, 76–119, 70–1156, and 83–201) for blue (Hoechst 33342 positive nuclei),
green (SOX-2 positive cells), red (CDX-2 positive cells), and magenta (GATA-6 positive
cells) channels, respectively. Mean inter-EPI cell distances were measured using the Imaris
spots-to-spots closest distance algorithm.

4.5. Statistical Analysis

Shapiro–Wilk tests were used to assess the normality of the data. Differences in embryo
size, total cell number, total numbers of TE, EPI, and PE cells, and percentages of all cells
classified as TE, EPI, and PE cells were compared between day 7 IVD and IVP embryos
using the Mann–Whitney test. Unpaired T-tests with Welch’s correction were used to detect
differences in embryo size, total cell number, total numbers of TE, EPI, and PE cells, and
percentages of cells classified as TE, EPI, and PE cells between day 7 (fast development)
and day 9 (slow development) IVP blastocysts. The Mann–Whitney test was used to detect
differences in embryo size, total cell number, and total numbers of TE, EPI, and PE cells
between IVP embryos collected 2 days after transfer to a mare’s uterus and IVP embryos
cultured in vitro for 2 days. An IVP embryo without SOX-2 positive cells (collected 2 days
after transfer to a mare’s uterus) was excluded from the comparison of total EPI cell number.
Statistical analysis was performed using GraphPad prism software version 8 (GraphPad
Software, San Diego, CA, USA). Differences were considered statistically significant when
p < 0.05; tendency 0.05–0.09. Data are presented as means ± SD (standard deviation).

5. Conclusions

In conclusion, IVP horse blastocysts have a more dispersed EPI than IVD horse
blastocysts with an intermingling of EPI and PE cells. The greater dispersion may result
from developmental delay and is even more pronounced in slowly developing (day 9)
IVP horse blastocysts. However, the EPI of IVP horse blastocysts compacts rapidly after
transfer to the uterus of a recipient mare, which indicates that the uterine environment
can normalize the developmental differences of IVP embryos. Overall, unraveling and
comparing the intra- and extra-embryonic factors that affect the molecular mechanisms
underlying cell commitment and the inter-proteomic crosstalk between transcription factors
that dictate cell fate, such as CDX-2-, SOX-2-, and GATA-6, seems to be an important aspect
of promoting improvement in the efficiency of generating ex vivo-derived high-quality
blastocysts in equids and other mammalian species. This might also enhance in vivo
developmental competence after intrauterine transfer of IVP-derived embryos propagated
by advanced assisted reproductive technologies (ARTs), such as in vitro fertilization (IVF),
based either on gamete co-incubation or intracytoplasmic sperm injection (ICSI) [44–47],
and cloning based on somatic cell nuclear transfer (SCNT) [48–50].
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