201 research outputs found
Higher-order effects in electron-nucleus scattering
Higher-order effects are calculated in the framework of the eigenchannel theory for elastic and inelastic electron-nucleus scattering in the energy region 100≤E≤250 MeV. A dispersion effect of about 12% is found for the elastic scattering on Ni58 at a momentum transfer q≈500 MeV/c. For inelastic scattering, the reorientation effect is discussed, in addition to the dispersion effect. The total higher-order effect changes the form factor for a hindered first-order transition by 50% at its minima. Furthermore, the dependence of the higher-order effects on the transition potentials of the virtual excitations, the model dependence, and the dependence on the energy E of the electron and the momentum transfer q are discussed. A closed formula for the S matrix is developed by calculating the eigenchannels in stationary perturbation theory
Microfield distributions in strongly coupled two-component plasmas
The electric microfield distribution at charged particles is studied for
two-component electron-ion plasmas using molecular dynamics simulation and
theoretical models. The particles are treated within classical statistical
mechanics using an electron-ion Coulomb potential regularized at distances less
than the de Broglie length to take into account the quantum-diffraction
effects. The potential-of-mean-force (PMF) approximation is deduced from a
canonical ensemble formulation. The resulting probability density of the
electric microfield satisfies exactly the second-moment sum rule without the
use of adjustable parameters. The correlation functions between the charged
radiator and the plasma ions and electrons are calculated using molecular
dynamics simulations and the hypernetted-chain approximation for a
two-component plasma. It is shown that the agreement between the theoretical
models for the microfield distributions and the simulations is quite good in
general.Comment: 18 figures. Submitted to Phys. Rev.
Isospin relaxation time in heavy-ion collisions at intermediate energies
Using an isospin-dependent transport model, we have studied the isospin and
momentum relaxation times in the heavy residues formed in heavy-ion collisions
at intermediate energies. It is found that only at incident energies below the
Fermi energy, chemical or thermal equilibrium can be reached before dynamical
instability is developed in the heavy residues. Also, the isospin relaxation
time is shorter (longer) than that for momentum at beam energies lower (higher)
than the Fermi energy.Comment: 8 pages Latex + 2 ps Figs.; Phys. Rev. C in pres
Quaestiones Pisistrateae : dissertatio inauguralis
http://tartu.ester.ee/record=b2017354~S1*es
Altered corticostriatal connectivity in long-COVID patients is associated with cognitive impairment
Background
The COVID-19 pandemic has had a significant impact on the health of millions of people worldwide, and many manifest new or persistent symptoms long after the initial onset of the infection. One of the leading symptoms of long-COVID is cognitive impairment, which includes memory loss, lack of concentration, and brain fog. Understanding the nature and underlying mechanisms of cognitive impairment in long-COVID is important for developing preventive and therapeutic interventions.
Methods
Our present study investigated functional connectivity (FC) changes in patients with long-COVID and their associations with cognitive impairment. Resting-state functional MRI data from 60 long-COVID patients and 52 age- and sex-matched healthy controls were analyzed using seed-based functional connectivity analysis.
Results
We found increased FC between the right caudate nucleus and both the left and right precentral gyri in long-COVID patients compared with healthy controls. In addition, elevated FC was observed between the right anterior globus pallidus and posterior cingulate cortex as well as the right temporal pole in long-COVID patients. Importantly, the magnitude of FC between the caudate and the left precentral gyrus showed a significant negative correlation with Montreal Cognitive Assessment (MoCA) scores and a negative correlation with Trail Making Test B performance in the patient group.
Conclusion
Patients with long-COVID present enhanced FC between the caudate and the left precentral gyrus. Furthermore, those FC alterations are related to the severity of cognitive impairment, particularly in the domain of executive functions
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-Value Dependence of Multinucleon Transfer Reactions
- …
