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Higher-order effects are calculated in the framework of the cigcnchannel theory for elastic and iiielastic 
electron-nucleus scattering in the energy region 100<E<250 MeV. h dispersion effect of about 12% is 
found for the elastic scattering on NisS at  a momeiitum transfer q =SO0 RfeV/c. For iiielastic scattering, the 
reorientation effect is discussed, iii addition to the dispersion effect. The total higher-order effect changes 
the form factor for a hindered first-order transition by 50% a t  its ininiina. Furthermore, the dependence 
of the higher-order effects on tlie transition potentials of the virtual excitations, the model dependence, and 
the dependence on the energy E of the electron and the monientum transfer q are discussed. A closed formula 
for the S matrix is developed by calculating the eigenchaniiels in stationary perturbation theory. 

I. INTRODUCTION virtual riionopole excitation in a coiipled-chaiiiiel 
calculation fo> the elastic scattering of 250-MeV 

IGH-ENERGY electron-nucleus scattering has electrons by Ca40. relative effect of is found at H Proved to be successful tool for investina- those scattering angles IThere the eiastic Cross yction 
tions of the nuclear structure. The  main reason for has minima (Fig. 14). Recently, second-order 
this is that the interaction bet~veen the electron and the tilrbation theory with distorted waves Tvas employed 
nucleus is well known, which facilitates the anal!-sis of by Onley.8 
the scattering data. Besides the earlier more general Related to the coupled-channel ,iiethod is the 
review articles of Hofstadter,' we refer in this con- eigenchannel theory (EKT) ,,f =anOs an,j ~ ; ~ ~ i ~ ~ ~ , g  
nection to the review Paper Of De arid co-morkers,9 which has been applied to a number of 
on the theoretical aspects of electron-nucleus scattering. nuclear reactions? The EKT has also been formulated 

The analysis of a scattering experiinent is made in the 
f„ high-energy electron-nucleus s c a t t e r i n g , ~ ~ , ~  

follo~~ring rnanner: One assumes a nuclear model with in contrast to the of nLlclear reactions, the S 
certain charge, current, and magnetization density matrix can be found after iteration. First 
distributions and calculates the Cross section in first- results, I\.hich haVe been reported elsemllere,12 showed 
order perturbation theory, where either the electron is that higher-order effects give contribLltions up 
treated free particle CBorn a~~roximat ion  (BA! 1 Or 10-25% to elastic arid 50-1005/, to iIielastic form factors 
the static Coulomb field is taken into account exactly3t4 for target nucleus with Z= 26 arid an incident electroli 
[distorted-wave Born approximation (DWBA)]. energy of E= 200 MeV. 

Al1 Open question was: How nluch are the results In to give here a nlore colllplete illvestigation of 
nlodiiied by  taliing into account higher-order effects in the higher-order effects, u,e present in Sec. II the EKT 
which two or inore virtual quanta are exchanged be- construction scheme for the mätrix. applying 
tween the electron and the nucleus? Estimates were stationary pertilrbation theory we are then able 
made in second-order Born approxin~ation.~.~ It has been derive in Sec. 111 ,-losed forlnula for the s nlatrix 
pointed out, however,' that one has to startmith correct, which illulninates some of our later results. In Sec. 1V 
i.e., distorted, wave functions to get reliable results on m,e specify the nuclear lnodel. The follom,ing properties 
the higher-order effects. of higher-order effects in elastic scattering are then 

This was done by Rawitscher,? ~ ~ h o  considered a treated in Sec. V: the dependence of the efiect the 
-. -- - properties of the intern~ediate transition potentials, the 
* Work supported in part by the Deutsche I"orschungsgemein- atomic weight A,  and the nuclear model. Fiirthermore, 

schaft with a contract for studies on nuclear structure and carried the effect is calcLllated as a furiction of both the in- 
out under the auspices of the Center for Advanced Stuclies at the 
Cniversity of Virginia; also supported by a computcr grant from cident electron E and the lnonlentu* transfer In  
the Computer Science Center of the Universiiy of Virginia. 
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E 7 I:IG. 1. Inner antl outer space for tlie W, 
construction of the S matrix. Because -. . . . .. .-. 5 .- ---  L of the matching condition at  a= 10Vfm, 
the inner energy KTI of the electron does I 
not coincide with Wi = E- EN.L Because 
of the coupling of the channels, tlie 

I 
energies so and do not coincide with I 
E. This can be reached by a renormaliza- 
tion of the eigenphases. 

I 
-- Re 

Sec. VI, the corresponding investigations are made for 
inelastic scattering. U p  to this point we have coil- 
sidered only virtual transitions to nuclear states other 
than the initial and the final-a situation in which the 
higher-order effect is called (in analogy to optics) a 
dispersion effect. However, under certain circun~stances 
it is also possible that virtual transitions occur 
between the various magnetic substates of a nuclear 
state. This effect is weil known from Coulomb excita- 
tion and is called the reorientation effect. This effect is 
discussed in Sec. V11 together with the dispersion effect. 
Details on the numerical accuracy of our program are 
given, along with a comparison of our results with those 
of other authors. in Sec. VIII. In  Sec. IX the results are 
sumined up and'some conclusions are drawn. 

11. EIGENCHANNEL THEORY F O R  ELECTRON 
SCATTERING 

For the construction of the S matrix, we divide the 
total Hamiltonian H of the scattering problein into 

and look for eigenfunctions # of H tliat become super- 
positions of eigenfunctions of Ho in the asymptotic 
region, where Hin* is supposed to be negligible: 

Here I, and 0, are the ingoing and outgoing spherical 
waves of the particle, and (p, is a channel wave function, 
i.e., the wave function of the nucleus coupled with the 
spin-angular part of tlie wave function of the electron. 

The S matrix transforms the amplitudes of the 

incoming into the amplitudes of the outgoing waves: 

B,= - C S„~A,~.  
C f 

( 3 )  

Thus (2)  becolnes 

#N C (ALIc- C SLc,Ac,Oct)~c. 
C e r  

(4) 

The amplitudes AC are determined by the condition 
that iC/ should describe a plane wave in the enlrance 
channel. 

Tiine-reversal invariance iiliplies that the S inatrix 
is unitary. Moreover, its submatrices Sr," of a given 
total spin I and parity a are syininetric.13 Therefore, 
SIjr can be diagonalized by the real, orthogonal matrix 
VcrsT,v, and the following eigenvalue equation exists: 

The phases 613Tfv are the eigenphases, and v denotes the 
varioiis eigenchannels, of which there are as many as 
there are Open physical channels. Assuming that the 
amplitudes Ac of the incoming channels are the Vd,7,v,14 
the wave function in the vth eigenchannel is 

For the further evaluation of this expression, mTe have 
to specify the physical channels (C). 

We assume that the target nucleus has a set of dis- 
crete energy levels {a, J*], which are labeled by the 
index oc, so that the nuclear spin J is a redundant index. 
Since \Te deal with relativistic electrons as probing 

'3 E. P. Wigner, Gioup Tkeory (Acaclemic Press Inc., New York, 
19.59) . .... 1 .  

l4 Because we will subsequently aln-ays consider the subspaces 
of fixed total spin I and parjty T, we ~vill drop the indices I and 
T mlienever no ambiguity arises. 
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particles, the Hamiltonian Ho is given by 

and the electrostatic field of the nucleus has to be 
included in HDim0 because of its long-range properties. 
LIaking a partial-wave decomposition of the wave 
functions, we have in the asymptotic region, where 
k,r>>l (l+ 1) , and in the high-relativistic-energy limitu 

The wave number k, and the energy Wo of the electron 
are given by energy conservation, 

km= W,/fic= (E- E H , ~ ) / ~ ~ c ,  (9) 

where E is the incident energy of the electron and 
E N , ~  is the nuclear excitation energy. The logarithmic 
phase y ln2kar=Ze2/fic l n 2 k j  Comes from the static 
Coulomb field. The channel wave function is given by 
the nuclear wave function 1 cr, J ,  J,) coupled with the 
spin-angular part15 of the solution of the Dirac equation 
xkKp to a total spin I :  

Here we have Set (I ,)=I,  since the rotational invariance 
implies that the S matrix does not depend on (I,). 

The eigenchannel wave function (8) represents a 
superposition of standing waves with a common 
phase-the eigenphase-in all physical channels. We 

M. E. Rose, Relathistic Electro~t Theovy (Wiley-Interscience, 
Inc., New York, 1961). 

FIG. 2. Enlarged section of Fig. 1, 
shoning how the unperturbed total inner 
energies E,,, are arranged in multiplets. 
Since the perturbation is small, the 
perturbed energies zv are arranged in 
similar niultiplets. The differentes E, O- 
1; are of the order 3 X 10-4 MeV and are 
thus much smaller than the energy loss 
of the electrons in tlie excitation of an 
intermediate state. 

can compute the eigenphase 6' and the eigenvectors 
Vcv, and thus the S matrix ( 5 ) ,  by matching the solu- 
tions of the total Hanliltonian H to these standing 
waves. To  achieve this, we introduce a cutoff radius16 a 
and evaluate there a set of boundary conditions, which 
the interior solutions of H have to ~neet .  I n  the case of 
potential scattering, ~vhere Nnt=O, these interior 
solutions are given by" 

in the asymptotic region; the nornialization is in a 
sphere of radius U.. \I'e cari obviously match these 
solutions to the standing waves (10) by continuing 
them into the outside region where r > a ,  and get 
thereby - 

La= ka and 6,,,Pot=6 a .I Pot. (12) 

Thus, the eigenphases are equal to the potential 
scattering phases in the physical channels. Korv when 
Eint is included the varioiis physical channels are 
coupled and the interior energies are no ionger equal to 

I6 For our follorving calculations, we choose C =  105 fm. Since 
xve deal mith electron energies u p  to 250 MeV and angular mo- 
menta up to 27, the condition fia>>l(lf 1) is always fultilled, and 
it is thus justified to deal with asymptotic wave functions at  the 
boundary radius. I n  principle, the choice of a has no influence on 
the S matrix in the EKT, as long as the range of Hint is smaller 
than a (note that  the most critical r-I terrii of the inultipole 
expansion of the electroinagnetic interactioii is already included 
in Ho) and the nuclear wave functions guarantee channel orthog- 
onality in the interior region. F'or the iteration procedure as 
developed below, holvever, it is convenient to choose a large a. 
On the other hand, this can lead to nuinerical difficulties in the 
evaluation of the transition matrix elements. 
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E as in (12), but are shifted by a certain amount 
(Figs. 1 and 2), and the eigenphases have to be shifted 
accordingly to yield the matching condition. Since one 
expects this shift to be small from a simple schematic- 
nlodel calculation, the wave functions (11) serve as an 
excellent basis for the diagonalization of the total 
Hamiltonian in the iilterior region.17 Applying the 
matching condition to the basis set, kve get 

for the interior wave numbers &,(P), which are a 
function of the still unlinown eigenphases 6". For the 
subsequent discussion, it is now important to notice 
that the potential scattering phases are only slowly 
varying functions of L,. This is because we deal with 
incident electron energies E of 100<E<250 MeV and 
are thus far-off resonances of the electron above the 
static potential (Fig. 1). Also, since the logarithm is a 
slowly varying function of &, ( ~ & , u N I o ~  for E= 100 

MeV and a= 105 fm), we can cancel the logarithmic 
terms 2nd drop the tilde above the potential scattering 
phase 6„,Pot. Thus (14) becomes 

A necessary condition in going from (14) to (15) is 
that the excitation energies between the various states 
/ a, J*) are not too high, because only then does the 
condition 1 6v-6,,,p"t 1 <<I, which guarantees that the 
J, are close to the k„  hold.ls We choose now a certain 
channel (co) = (ao, K ~ }  and make for all eigenphases the 
Same zero-order ansatz 

With the help of Eqs. (9) and ( E ) ,  Tve then get for 
the interior energies 

where n is an additional radial quantum number. The 
diagonalization of the nlatrix of the total HamiltonianIg 

is equivalent to the solution of the secular equation20 

fic(6„~"~-6 ci pot+ ?~ia)+ (@Cl,„ I Hint I @Cl,„). . . (@„,W 1 Hint I @„,W) 

U-I det . . . ... =@'-E, (19) 

... hc (Gco~ot-6 cMPot+nM~)  + (@cM,nM I Hint I @cM,nM> 

where M=I\IXI\", AT being the nuinber of. physical 
chaiinels whicli can be coupled to a total spin I, and 
N' the number of radial quantum numbers n of the 
basis set which are taken into account. The off-reso- 
nance argument leads again to the conclusion that the 
matrix elements on the left-hand side of (19) vary only 
slowly m-ith the energy. The matching condition, i.e., 
the vanishing of tlie right-hand side of (19), can thus 
be fulfilled by subtracting the right-hand side from the 
entire equation, or, equivalently, by renormalizing the 
eigenphases: 

A prescription has still to be given ou the particular 
choice of the Ev in (19), because there are M=NXlV' 
eigenvalues gv but oniy N eigenchannels. The unper- 
turbed energy levels E„,,, [Eq. (17)] are ordered in 
multiplets for every radial quantum number n (Fig. 2),  
because the differences bet~veeil the potential scattering 
phases are much smaller than a if the energy loss of the 
electron is not too large. Since the perturbation is small, 

l7 Because of the large incident energy of the electron, we can 
neglect the electronic bound states, which must be taken together 
with the states ,,&, to form a complete set. 

the perturbed energies f i v  are arranged in a siinilar 
pattern of multiplets. To get the best values for the 
eigenphases, it is then convenient to taliefor the 
renormalization of the eigenphases (20) those Ev of the 
set which correspond to n=O and which lie in the im- 
mediate vicinity of E, because then the renormalization 
will be smallest. In our actual calculation, we dropped 
the states with nZO from the beginning. Applying 
first-order perturbation theory to the interior stationary 
states (17), one Sees that the ratio Q of the admixture 
coefficients of a state with n =  f 1 and a state with 
n=O is determined by the energy differences between 
these levels and the eigenchannel. These energy dif- 
ferences are proportional to tlie phase differences (17), 

Typical values of I ~ ? ~ - 6 , , , ~ O t  / are 1.5 X 10-I at E = 200 MeV 
and anenergy loss of 5 MeV (See Ref. 11). Therefore, 1 W,- M', ( = 
(Rc/a)  X1.5X10-l= (3X 10 f n ~ )  a1 MeV. This correspands to 
1 6,,.Dot-6a„Dat j=3X10-la-ll where a is in fm. The potential 
scattering phases themselves can, for numerical reasons, only 
be determined up to an accuracy of about 5 X 10-6. 

'9 Although the interior radial wave functions of the electron 
are not orthogonal, because they obey different boundary condi- 
tions in different channels {cu] [Eq. (15)], the orthogonality 
of the wave functions Pa,,,, is guaranteed by the orthogonality 
of the channel wave functions. Because 1 @*-W, ]<<I (See 
Ref. 18), we also dropped the tilde in the matrix elenlents of Hint. 

2% factor a1 can be talren in front of the interaction matrix 
elements because of the normalization of the interior wave func- 
tions of the electron. 
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so that 1r.c gct (Fjg. 2)  

Q= max I 6,,,Pue-6,~„~~0t ~/TN~L/;. (21) 

Because of the weak coupling, the admixture coefficients 
of the states which are talien into account are very small 
thenlselves, namely, of the order .5X10-2. Shus  the 
neglected states molild give contribiitions of the order 
of 0.2.50/, to the S mdtriu. Ti1 reality, honlever, the error 
will I)e even snialler, sirice one evpects the contribiition 
of states with opposite sign of n to cancel. 

Tl'ith the eigenphases G Y  and the eigenvectors Ve,Kv, 
which are given by the diagonalization of the S rnatriu, 
we can compute the S matrix 

The differential cross section for the e~citat ion of a 
nuclear state / a', J ' )  from a state 1 ai, J )  is then giveri 
by" 

where tlie incident beam travels in the z direction, and 
I).$ is tlie direction of the scattered electron. The foriii 
factor is defiiled as 

where the Mott  cross section is given in the high- 
relativistic-energy limit by (8 is tlie scattering angle) 

As initial values for the one-step iteration procedure 
for the S matrix we need the potential scattering 
phases 6„,Pot and the matrix elenients of the interaction 
Hamiltonian H;,t. These quantities are conlputed with 
a code previously used for DWBA calculat ion~.~'-~~ 
Because the higher-order effects show up in differences 
between the DWBA form factors FD2 and the EKT 
form factors F.2, it is useful to malre a DWBA calcula- 
tion parallel to the E K T  calculation. For this we have 
only to replace the S-matrix elements in (23) by their 
first-order DWBA values. These are 

for elastic scattering, and 

21 D. Drechsel, Nucl. Phys. 78, 465 (1966) ; Z. Physik 192, 81 
11 066) , * , , . 

D. Drechsel and C. Toepffer, Niicl. Phys. A100, 161 (1967). 
2jC.  'roepfler and D. Dreclisel, Z. Physik 210, 423 (1968). 

TVit1-i tliese espressions introdiiced isito Eq. (23) foi- 
the differential cross section, one gets, alter some 
recoupling, the conventional formulas for the elastic15 
aad the inelastic2'-" differential cross section. 

111. CLOSED FORMULA FOR S MATRIX 

r2lthoiigh we will use in the following calcu1:itions the 
above-described diagonalizatiori procedure, in which 
esplicit reference is inade to the intermediate states, it 
is very convenient for the interpretation of our results 
to apply the conventional perturbation theory to the 
states (17) and to give the S matrix (22) as an es- 
pansion in orders of Hi„t. 

In  zeroth order, the physical channels and the 
eigenchannels are identical, and we liave 

where we denoted the Kronecker 6 by A in order to 
avoid corifusion with the phases 6. Introduction of ( 2 8 )  
in (22) gives the S matrix in zeioth order: 

Scct = exp (2i6,pot) Am!, (29) 

~vliich is identical \T ith ( 2 6 )  . 
I n  first order, lve have for the adinixture coeilicients 

arld the eigenphases, according to (20), are 

- 
because by construction E„= E. Then S is, up to term 
linear in Hi„t, 

We have then for the diagonal elements 

Sm= exp (2iG,pot) C1 - 2i(a/fic) H„], (33) 

i.e., an additional term, which becomes important if 
the nuclear state ( C )  has, for example, a static quad- 
rupole moment. For the off-diagonal elenients rve note 
that [from (17) and (30) ]  
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Then me have 

Sccl = espi ( 6 , ~ 0 ~ + 6 ~ , p ~ ~ )  [expi(Gcput- hC,pot) 

- expi (6,,uot- 6 C Pot )I (a/fic) HcrL/ (6,1p0t-6,1'"t). (35) 

Under the condition that the energy loss of the electron 
is not too high, so that  / 6crp0t-6,p0t / one can 
expand the exponentials in the second factor, and one 
gets 

SLLf = SC),= - 2i(a/fic) e s p i ( 6 , ~ ~ ~ + 6 , ~ ~ " ~ )  H,!„ (36) 

wliich corresponds to (27). 
T o  get Sm up to terms quadratic in Hin, we need the 

second-order adinixture coefficients 

~ i , " o =  l - ~  2 1 H , , ~  12/ ( E C - E c p ,  C= CU 

CI 

= H„~/ (ELO- Zc) + (second-order terms) , c f co 

(37) 
and the second-order energy shift 

M7e have then for the diagonal S-niatris elements 

If one expands the exponential in the last term up to 
quadratic terms, the third and fifth terms of the 
bracket cancel against the absolute and linear terms of 
the expansion, and one is left with 

24 Tliis condition lias already been used in the rierivation of 
the simplified mat,chiig condition ( 15). 

Neglecting the retardation in Hin* aiid the eiiergy loss of 
the electron in a virtual transition, so that h,- k,  we get, 
hy applying the closure relationZ5 to the radial nuclear 
wave functions fGJ, 

~ h e r e  tlie functions feXJ aild g ~ , ,  are defined in terms of 
the total interior wave function (10) and (11) by 

Before we interpret (42), let us recnll the conditions 
on which the iteration procedure is based: IVe have to 
deal with large incident electron eiiergies and a large 
cutoff radius a. If the energy loss of the electron in a 
virtual excitation is not too large, so that the phase 
differences are small, nTe can drop the tilde above the 
potential scattering phases (15) and the interior wave 
functions (18) and also neglect the states with nf 0. 
Also, because the coupling betmeen the channels is 
weali, we can make the Same ansatz16 for all eigen- 
phases, which nieans that we work in tlie same Hilbert 
space when evaliiating different eigenchaiinels. 1Ve find, 
moreover, that only one iteration is necessary to get 
highly accurate S-matris elenients. The Same conditions 
are important for the evaluation of (42). I n  order to 
compare these results with the conventional ones 
[Eqs. (26) and (27)], the tilde on the potential scatter- 
ing phases and the wave functions inust be dropped, 
and explicit use niust be made of the small phase 
differences. However, there is no need to distinguish 
between interior and esterior admixture coefficieiits 
(as in the case of nuclear reactions,") because we use 
only the states with ?z= 0 and construct all eigenchannels 
with the Same Hilbert space. 

Although we made a restriction on the energy loss of 
the electron in deriving (41), we may use the coinplete- 
ness relation in going from (41) to (42), because it 
seems quite unreasonable that states with an energy 
comparable to the incident electron energy (only then 
do the phase differences become of order 1) are im- 
portant as intermetliate states. Should, for exa~nple, 

'j We thank Professor H. Marschall for clarifying discussions 
about this point. 
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virtual pion production play a ro!e in the scattering of 
250-MeV electrons? 

We can therefore state that  the S matrix depends on 
the energies of the intermediate states only through 
the interaction matrix elements, because there are no 
esplicitly energy-dependent terms-such as energy 
denominators-in (41) and (42). Equation (41) states 
that the second-order contribution to thesmatrix is the 
sum of the contributions of the particular intermediate 
states, and therefore Eqs. (41) and (42) Open the 
possibility of using sum rules for the calculation of 
higher-order effects instead of making explicit reference 
to intermediate states. 

I n  the following calculations, we shall use the 
iteration procedure for the construction of the S matrix, 
as outlined in Sec. 11, to show that our explicit results 
are in accordance with the conclusions we can draw 
from the above closed forms (41) and (42) for the S 
matrix. 

IV. NUCLEAR MODEL 

The interaction between the electron and the nucleus 
is giveii by 

where @eret and AGret are the retarded potentials of the 
electron a t  the nucleus. The matris elements of Hin$ are 
computed using the multipole expansion of Hfnt 26,27 and 
inserting the wave functions @ [of which the asymptotic 
behavior was given in ( l l)] .  Neglecting the retarda- 
tion" and the contributions from the nuclear current 
and magnetization, we have for the interaction matrix 
elemen ts1° 

( @ o , , r ,  I Hin$ 1 @,,,)= - 2n1/2(- 1)l-J'-I+j+jf+l/* 

is the transition potential. The radial wave functions f 
and g of the electron are solutions of the radial Dirac 
equationI5 : 

These coupled equations are integrated nurnerically up 
to a certain radius Rrn„ and the resulting wave functions 
f and g are inserted in (4.9, where the integrals can 
then be computed up to R„. For RmaX<r,<a we use 
the asymptotic expansions for f and g up to terms of the 
order O(kar)-2, with which the remaining integral can 
be calculated ana ly t i~a l ly .~~  

The static potential V(r) is the solution of the 
Poisson equation 

V2V (r) = 4repst (r) , (48) 

where p,$(r) is the model-dependent charge density of 
the nucleus. I n  our calculations we will use a spherical 
Fermi distribution30 

(50) 
and 

U= t/4 ln3. (51) 

X [(2j1+ 1) (2j+ 1) ]'I2 (2X-1 l)- l I2 c is the half-density radius, t is the 90-10% surface 
X thickness, and W3(0, alc) is a function defined in 

Ref. 30. 
I n  order to calculate the interaction matrix elements, 

we further have to specify the excited states of the 
nucleus. I n  the spherical medium-heavy even-even 

X La d ie  Y:( f a ~ , K J f , , K + g a t , X X g a a K ) J a ,  J+a., J.(*) (re), (45) nuclei, the nuclear spectrum can be described fairly 
well by the collective model with two different kinds of 

where inodes: (a) T= 0 vibrational modes for the low-energy 
states, and (b) T= 1 giant-resonailce modes for the 
high-energy ( E 2  15 MeV) states. For the vibrational 
states we use the harmonic-vibrator model in rvhich 

X (a', J' / I  pflYx(O.v) 1 1  a, J) (46) the charge-density operator is given by 

26 F. Scheck, Nucl. Phys. 77, 577 (1965). dp,t 27 L. C. Biedenharn and P. J. Brussard, Coulonzb Excitation 
PN (i) = Pst - ( 2 ~ +  1) l/2[a [XI X Y[Xl] [OI,  (52) 

(Clarendon Press, Oxford, 1965). dr i 

2S Consistently, one must then also neglect the energy loss 
in the transition inatrix elements. This means that there is no 
dependence On the energy of the intermediate states at  all in to first Order in the cO1lective coordinate ff#rX1. in- 
(19) and (42). Moreover, one inust also neglect the energy loss 
in the phase differences in (19) and (42) in order to compare 
/ F and / F ID2 consistently for inelastic scattering. This was 29This is not possible if the transverse part of the interaction 
not done for I F lE2in a previous publication (Ref. 12). and there- is included in (45). One must then choose a smaller cutoff radius 
for the dispersion effects for inelastic scattering tumed out to be a with a=R„,. 
somewhat too large there. 3 Q j r .  Schucan, Nucl. Phys. 61,417 (1965). 
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clude second-order terms we estend (52) b f 1 3  its 

Tlie collective coordinates C X , [ ~ ~  can be written in terms 
of creation and annihilation Operators for suriace 
phonons: 

ap[Xl =ßA(2X+ l)-'~2[ßp[Xlt+ (-)ijO-,,[xl]. (54) 

Here the effective deformation ßx is related to the mass 
and force constants BA and CA in the Hamiltonian of 
the harmonic vibrator by 

where WA= (CA/BA)~I~ is the oscillator frequency of 
multipolarity X. IYe can now calculate the transition 
potentials between all vibrational states including the 
ground state, which is by assumption a O+ state. 

In Eq. (53) for the charge-density operator the 
parameters of the higher terins are fully determined by 
the paraineters of ths static charge distribution. In 
order to fit the experimental inelastic cross sections, it is 
convenient to loosen this restriction by allowing for 
different parameters in the derivations of the charge 
distribution. Then we have 

The strength constants hTx can be adjusted to give the 
correct reduced transition probability, ~vhich is defined 

=Z2e2Ni2(2X+ 1) Ix2 ,  ( j 8 .  
with 

The reduced transition probability is in turn related, up 
to first order, to the effective deformation ßx by3i 

B (EX, O++X+) = [3/ (4n) ZeR$I2ßA2, (60) 

with Rn= l.2A'l3 fm. 
The transition potential (46) is then, upon insertion 

of (56), up to first-order terms, 

For the giant resonances we use the dynamic collective 
model due to Danos, Greiner, and ~ o - w o r k e r s ~ ~ , ~ ~  The 
giaiit dipole mode consists of an out-of-phase motion of 
Protons and neutrons, for ~vhich the symmetry term of 
the Bethe-Weizsiicker formula gives the restoring 
sotential. Because of the chanee of the radii of the " 
principal nuclear axes in a vibration, the giant-resonance 
inodes are coupled to the vibrational modes, which we 
discussed earlier. This coiipling leads to a splitting of 
the giant-resonance states. I t  has been shown that the 
main peaks in the giant-resonance region are 1- states, 
where dipole phonons d t  and quadrupole surface 
phonons ßf are coupled: 

I a, 1-)=p,dt+ q,[d+Xßt][l-l+higher terms. (62) 

In the charge operator (56) a term must be added 
which describes this mode. The transition potential for 
a dipole transition into such a state is given byI6 

where 
(63) 

Sad= -S 0 (1) ßz/v"¿ (64) 

and Sn) and So(') are given in Ref. 16. 

31 L. J. Tassie, Australian J. Phys. 9, 407 (1965). 
A consistent derivation of the nuclear charge-density operator 

[D. Drechsel, 2. Physik 181, 542 (1964) J, starting from a static 
uniform charge distribution, gives a first-order term witli a radial 
dependence ~ d p „ / d r  and txvo second-order terms with a radial 
dependence d2pst/dr2 and dpSt /dl ,  respectively. All these expan- 
sions cf p ~ ( r )  have in common that the resulting transition 
densities have a peak of a width =t at the nuclear radius. 

33 In the following calculations, however, we always use ct.=c 
and q. =U.  

34 0. Nathan and S. G.Nilsson, in Alplza-, Beta- und Gamnza-Ray 
Spectvoscopy, edited by Kai Sieghahn (Nortli-Holland Publishing 
Co., Amsterdam, 1965), Chap. X. 

38H. J. Weber, M. G. Huber, and W. Grcincr, Z. Physik 192, 
182 (1966); 192, 223 (1966); M. G. Huber, H. J. Weher, M. 
Danos, and W. Greiner, Phys. Rev. 155, 1073 (1967). 

J6The properties of the dynamic collective model are also 
discussed in the reviem articles by 111. G. Huber, Am. J. Phys. 
35, 685 (1967); H. Arenhövel and W. Greiner, in Progress i n  
Nuclear Physics, edited by D. M. Brink and J. Mulvey (Pergamon 
Press, Ltd., Oxford, 1968), Vol. 10. 
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froni (61) ; and 

FIG. 3. Elastic form factors F /D% (DWBX) and I F 1~~ (EKT)  
for E=250 MeV, Nij8, and ß2=0.3. The wave functions of the 
intermediate states are 11, 2')=pt ( 0 ) ,  / 2,  1 - ) = d t  / 0 ) ,  and 
1 3, 1- ) = [ ~ Z ! ~ X ~ ~ ] [ ~ - ]  1 0 ). The broken lines in the iiuclear spec- 
trum reprcsent the major virtual transition motles. 

\Te ~vill first consider in our calculations the grouild- 
state with 

I ff, J ) =  10, Ot)= IO), (65) 

and, in addition, a vibratioiial 2+ state mith 

arid two 1- giant-resonance states with 

and 

i N, J)= 1 3, 1-)= (p3dt+q3[dt~ßt][l-1)j 0), (68) 

where in the last t ~ o  wave functioils the pairs (P,, q,] 
and (~3,931 must be orthornormal. We have then to 
consider the following transition potentials" for the 
construction of the matrix (19) : 

" 7Te neglect the octupole potentials J1,9++a,1-(J), the monopole 
transitioil potentials between the 1- states, and the reoricntation 
in the 1- states. The latter two transition potentials result from 
the two-surface phonon terms in p ~ .  

from (63). 

V. DISPERSION EFFECTS I N  
ELASTIC SCATTERING 

Unless otherwise specified, V, e use for our follor~ ing 
calculations a nucleus with Z= 28, A= 58 (Ni"'), which 
has a Ferini-type static charge distribution n ith param- 
eters ~=4 .28  fin and t= 2.49 fm; the effective defornia- 
tion is taken to be ß2=0.3, nhich corresponds to 
B(E2, 0++2+) = 1872 e2 fin4 [see Ecl. (60)]. The 
nuclear spectrunl is shonln in Fig. 3, which also shons 
tlle form factors I F lD2 and 1 F for elastic scatteriiig 
of 250-MeV electrons and their absolute difference 
ahich is caused by virtual e~citations to intermediate 
states. 

In  the following u e  ~vill call the relative qunntity 
(1 F lo2- 1 F I E ~ ) / ~  1' 1ß" the "dispersion effect" and 
discuss its properties. 

A. Dependence on Intermediate States and Virtual 
Transition Potentials 

M7e repeated the calculation which led to Fig. 3 for 
E=225 MeV in three urays: (1) keeping only the 2+ 
intermediate state, (2) keeping only the 1- states, and 
(3) keeping all three intermediate states. The cor- 
respoilding dispersion effects are sho~vn in Table I 
near the three minin~a of the elastic Cross section. The 
total effect is alrvays the SLIIII of those witli different 
virtual excitation inodes, but the dispersion effect 
resulting from a virtual evcitation to the 1- states has a 
different angular dependence from that  resulting from a 
virtual escitation into the 2+ state. The former gives the 
major contribution a t  sinall angles, the latter at back- 

TABLE I. Dispersion effect in elastic scattering for E = 2 2 5  
I\IeV, Z= 28,  ß2 = 0.3, a t  angles near the minima of the first-order 
form factor j F I D 2 ,  with various possible intermediate staies in 
the head line. The wave functions of the giant-resonance \tates 
are 1 2, 1-)= ( + f l d t + $ [ d t ~ ß t ] [ ~ - ] )  10)  and / 3, 1-)= 
(-$dt+$\/3[dtXßt][l-I)  / 0 ) .  
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ward  angle^.^^ To clarify this, we write Ecls. (23) and 
(26) in terms of the form factors: 

These foririulas differ o ~ t l y  iii the S-iilatris elen~ents; 
thus, writing 

ASZ= SI- SI (73) 

we have for the dispersion effect iii inatris notation 

Now, by coiiiparison with (26), one finds that ASz is 
given simply by the last term in (41) and (42)39: 

i.e., ASx is a complex number, of which the arguinent 
2i61Dot is independent of the intermediate states; its 
absolute value, however is, the sum of the contributions 
of the virtual transitions to the different interinediate 
states. Now in the final sums (71) and (72) for the 
forni factors, the S-matrix elenients are added co- 
herciitly, and therefore dispersion effect deperids on the 
scat tering angle. 

IFID- F ! :  

I F I ~  
251 I i.2*),- E= 250 MeV 

l o , o * > - L I  Z = 2 8  

Fit. 1. Dcpc~itlciicc of the tlisl>ersioii eiiect 

(I Ii Iu2-l l7 IsL)ll I,lL 

lor elastic scattering on the Square of the cffective dcforniation 
3 2  at scattering angles near the minima of 1 F 12. 

38 X similar calculation at  E=175 MeV sho~vs that this is 
indeed an effect depending on the scatteririg angle in this energy 
region. 

3g IIcc beco~mes Zero in our riiodel, as long as no rcorientation 
(Sec. VII) is considered. 

131~. 5. Dispersion effect in elastic scattering for Calo, NiaR, 
and Cd114. The small arrows aljove the ahscisss indicate the 
position of the minima of / F i ~ 2 .  

We discussed already in Sec. 111 the dependence of 
the dispersion effect oii the energy of the interniediate 
st~ltes, which was found to enter only throiigh tlie 
inatriv elements and is therefore weali. I n  this calcula- 
tion, tliis dependence vanidies ~oriipletely, since n e  
neglected retardation and consequently the energy loss 
of the electron. 

Another question is how niuch the dispersion effect 
depends on the B(EX) values of the virtual transitions. 
We considered again a 2+ state as intermediate state 
and calculated the dispersion e f fe~ t  for various effec- 
tive deforinations ß2. Froni (75), a e expect ASr g bc 
proportional to ße? Since in elastic scatteriiig Sz is 
independent of P?, me expect froni (74) that the dis- 
persion effect will be proportional to P$. This propor- 
tionality is coiifirrned by oiir actual calculations 
(Fig. 4). 

Recause ß2-B (EX), one lila> malie tlie gencraliza- 
tioii that for every interinediate state the dispersion 
effecl is proportional to the B(EX) oi thc corrcsponding 
viriual transition, as long ns the other paranicter., 
c~itering in the definitioii of B(EX) [Eq. (60)], i.e., % 
and R„ are fixed. No quantitative theoretical predictions 
can be made on the dependence of the disperion effect 
on these parailieters, since the DWBA S niatrices Sr 
theniselves depend in an involved n a y  on Z aiid Ro. 
()ualitatively one expects, holi e v e ~ ,  tli'ii tlre tlispersioii 
cffect becomes snialler n hen the target nu~leus  becomes 
heavier, bccause the minitiia of the Cross sections are 
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FIG. 6. Dispersion effect in elastic ccattering for two nuclear 
models. Full line: Fermi-type charge distribution witli c=ct,= 
4.28 fm, t = tt,= 2.49 fm. Broken line: equivalent uniform charge 
distrihution vith R„=S.O'il fm, R„=4.45 fm. 

more pronounced in light target n ~ c l e i . ~  This is con- 
firmed by a calculation of the dispersion effects for 
&a40, **NiSY, and 48Cd11%t E=250 MeV, ~vhere a 
state with ßz=0.3 is taken into account as the inter- 
mediate state (Fig. 5 ) .  For a more extreme example, we 
also calculated the dispersion effect for the scattering 
of 200-MeV electrons by unpolarized 68Er166, where the 
2+ state of the rotational band is talren as the inter- 
mediate state with ß2=0.3. I n  this case the dispersion 
effect never exceeds 1%. 

To test the model dependence of the dispersion effect, 
we made two calciilations for the scattering of 250- 
MeV electrons by NiS8, taking both times a 2' vibra- 
tional state with ß2=0.3 as the intermediate state. 
First we calculated the dispersion effect, using (as 
before) a Fermi-type static charge distribution with 
G= 4.28 fm and t= 2.49 fm, and the corresponding 
transition charge potential (61); then we calculated 
the Same quantity using the equivalent uniform static 
charge distribution with R,= 5.071 fm and a 8-function 
transition density a t  Rt,= 5.545 fm. Figure 6 shows that 
the value of the dispersion effect does not mucll depend 
on the nuclear model; the position of its maxima is, 
however, model-dependent: Since we defined the 
dispersjon effect as a relative effect, its n~axiiila occur 
at  those scattering angles where the first-order form 
factors, which is of Course model-dependent, has 
niinima. 

Up to this point we have considered prinlarily those 
properties of the dispersion effect which depend on the 
nature of the target. We will now turn to the influence 
of the kinematics of the scattering process on the 
dispersion effect. 

B. Dependence on Momentum Transfer q and Incident 
Electron Energy E 

Employing the Same nuclear rnodel as in Fig. 3, we 
calculated the dispersion effect for varioiis energies of 
the electron and plotted it in Fig, 7 as a function of 

both 100<E<250 MeV and the momentum transfer q. 
The dispersion effect has its maxima where the form 
factors themselves have their minima. For fixed q the 
height of these maxiina depends very littie on E. A 
large electron energy is needed, however, to reach high 
momentum transfer q where the effect becomes large. 

The parameters c and t of the Fermi-type charge 
distribiition (50) wcrc found for a nuniber of spherical 
nuclei with 22 20 by fitting to electron scattering exper- 
ments with energies up to about 250 MeV and scatter- 
ing angles up to 120°,2 i.e., in regions of niomentum 
transfer where the dispersion effects are still snlall 
enough to be neglected ( 5 5 %) . Recent experiments a t  
higher energies could not, however, be fitted by a 
first-order calculation with these parameters a t  back- 
ward angles with a monlentum transfer q>_ 1 GeV/c."O 
Since our results indicate that the dispersion effects 
becoine important for large nlomentum transfers, they 
should thercfore be included, as well as the finer details 
of the electrostatic charge distribution, in the analysis 
of high-energy electron scattering data. This \vould not 
affect those conclusions, such as the nuclear radii and 
surface thicknesses, ~vhich are dra~vn from the for~vard 
part of the diffraction pattern, where the momentum 
trnnsfer and thus the dispersion effects are small. 

VI. DISPERSION EFFECT IN 
INELASTIC SCATTERING 

Since we almays calculate the entire S matrix we get 
the inelastic Cross sections for the excitation of all 

FIG. 7. Dispersion effect in elastic scattering as a function of 
the incident electron energy E and the momentum transfer q. 
The nuclear model is described in Fig. 3. 

,***V 2." 

40 J. B. Bellicard et nl., Pliys. Rev. Letters 19, 527 (1967). 
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! \ , E.225 MeV 
1 1  2 7 2 8  
8 8 

, ß2 = 0 3 

FIG. 10. Same as Fig. 9 for various incident electron energies E 
as a function of E and the momentum transfer 4.  

FIG. 8. Form factors and the dispersion effect for the excitation 
of the 1 3, 1-)= (-$dt+$d[dt~pt][i-l) I 0 )  state in Ni@. In the 
spectrum, the full arrow indicates the first-order transition, and 
the broken arrows show the major virtual transitions. 

FIG. 9. Same as Fig. 8, except for the giant-resonance wave func- 
tions 1 2, 1-)=dt j 0 ), 1 3, 1-)= [dt XP~]['-] I 0 ). 

nuclear states, which were taken into account as inter- 
mediate states together with the elastic Cross section. 
In Fig. 8 we show as an esample the form factors and 
the dispersion effect for the excitation of the upper 
giant-resonance state (68) : 

1 cx, J)= 1 3, 11)= (-$dt+$G[dtXßt][l-]) / 0). (76) 

Since we defined the dispersion effect as a relative 
effect, (1 F 1 ~ ~ -  J F / B ~ ) / /  F 12, Ure can increase it by 
making the first-order effect smaller. If, for example, 
we choose the admixture coefficients in the wave func- 
tions of the giant-resonance states in such a manner 
that the dipole and the quadrupole modes are decoupled: 

then the 13, 1-) state can even in first order only be 
reached from the ground state by the excitation of both 
a dipole and a quadrupole phonon. The form factor 
1 F 1~~ therefore becomes smaller than in the (realistic) 
coupled case, and the dispersion effect becomes larger 
(Fig. 9). These calculations were repeated for several 
energies E (Fig. 10). 

TABLE 11. Same as in Table 1 for the excitation 
of the 1 3,1-) state. 

Intermediate states I 1, 2+) 
(deg) (%I (%) (%I 
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As in elastic scattering, we find by neglecting the 
/ 1,2+) intermediate state or the / 2, 1-) intermediate 
state that  the matrix elements of AS1 are a suni of the 
contributions from the various possible intermediate 
states. These contributions then add up also for the 
total value of the dispersion effect (Table 11), but in 
different ways a t  different angles because of the co- 
lierent partial-wave sum in (75). 

Before investigüting the dependence of the dispersion 
effect in inelastic scattering on the transition strengths 
of the virtual excitations, we will consider a type of 
higher-order effect other than the dispersion effect. 
The latter Comes froin a virtual excitation to an inter- 
mediate state 1 a, JA),  which differs iii its quantuin 
nuiiiber a from both tlie initial and final states. Iii 
contrast to the dis~ersion effect, the so-called reorienta- 

aiid the reduced transition probabilities become 

ß (E2 ,  / 0,0+)+ / a ,  2+)) 

LVe consider the escitation of the 1, 21) state. The 
direct-transition potential is obtained froin (46), (56), 
and (78) aild is given, up to t1z.o-phonon terins, by 

tion effect coines from virtual transitioils between the 
various magnetic substates of a particular nuclear state. 
It is well known and experimeatally studied in Coulonib 
e ~ c i t a t i o n . ~ ~  b7e  can investigate the corresponding 
effect in electron scattering by assuming an anharrnonic- 
vibrator model for the nucleus. 

VII. REORIEMTATION EFFECT 

In  the vibrator nlodel of a spherical nucleus we 
consider the folloxing escited states (Fig. 3 1) a singlet 
state, 

1 1, 2+)= ( p l ß t + q 1 , ' \ ~ [ ß i ~ ~ t ] [ 2 t ~ )  0),  (78) 

and the triplet 

1 3, 0+-)= l / i 2 ' [ @ i i ~ p i ] [ ~ ~ ]  1 O ) ,  (80) 

The mixing of the one-phonon 2f and the two-phonon 2+ 
states describes an anharinonicity in the niiclear 
quadrupole vibrations, ~ ~ I - i i c h  lextls t o  st atic clundriir>olc 
inoments in tlie 2+ states: 

Inserting (56), one gets, after soinc calculatioris, 

4 i  J .  (le Bo<:r ancl J. Eicliler, in Adv(1~tces ilz Xiicleur Pliysics 
fPleniim Press, Inc., Kew York, 1968), Vol. 1. This review articlc 
contains more references. 

l t  is consistent to coilsider only oiie-phonon terrns in the 
traiisition potentials of the virtual transitions because 
they enter a t  least cluadrntically iilto the S matrix. I n  
order to get the form factor I F 1.2 for the e~citatioii of 

FIG. 11. Total higher-order effect in NiS8 for the excitation of 
the / 1, 2 f )  state n i th  wave functions I 1, 2+ ) =  ( 3 ~ ' 3 p ~ + + @ ~ ~  
ßt]l2+l) 10)  and / 2, 2+)= (-$ßt++V3[;at~ßt][2+l) 10). The 
unbrokeii liiie repiesents the fiist-oider tia~isition, tlie brokeii 
Iine ( 1  0, 0 '  )+I 2, 2 '  )+I 1, 2 b ) )  represeiits tlie diq~ersion effect, 
and the I~roken line ( 1  0, Of )+! 1 ,  Z C ) i /  1, 2% )) rc[)rescnts ihc 
reorientatioii effecl. 



the / 1,  2 '  ) state exactly up to terins of orclei- P?, wc 
c,~ii then drop the 0+ antl tlie 4 '  state of the triplet ,ind 

also all transition potentials with X f  2, and we are left 
with 

The latter describes a transition within tlie magnetic 
substates of the / 1, 2+) state. Because transitions 
between states with different magnetic quantuin 
iiumbers are possible, such a transition is called a 
reorientation. Figure 11 sholvs the result of our cal- 
culation for 2=28 .  The total higher-order effect is a 
sum of the dispersion effect, i.e., the two-step excitation 
! 0, 0+)+ 1 2, 2 ~ ) +  1 1, 2+), and the reorientation effect 
1 0, Of)+ I 1, 2+)+ I 1, 2+). Table 111 shows that the 
dispersion effect and the reorientation effect are of 
opposite sign. This was also found in the Coulomb 
iexcitation of where the 2+ state of the rotation 
band takes the role of our I 1, 2f)  state and the ground 
:stak of the y band takes the role of our , 2, 2+) state. 

For the dependence of the effect on the effective 
deformation &, we note that if ß2<<1, then Sr is propor- 
tioiial to ß2 [Eq. (27)] and ASr to ßz"Eq. (75)], 
1,ecause the one-phonon term gives the major contribu- 
tion to J o , o + , ~ , 2 t ( 2 ) .  Therefore, both the dispersion effect 
and the reorientation effect are proportional to ß2 

(Fig. 12). 
Furthermore, we repeated the calciilation, which led 

to Fig. 11, for 48CdU4. Although B(E2, I 0, O+)+ I 1, 2-1.)) 

TABLE 111. Total higher-order effect iti the excitation of the 
I 1, 2+) state in Nij8 at  E=200 MeV near the minima of j F j p2 .  
The second column gives the dispersion effect, and the third 
gives the reorientation effect. I n  the fourth colurnn, both virtual 
excitation modes were considered to zive the total effect. The 
wave functions are I 1,  27 )= i+flß?$+[ßf~ßt][~+l) 1 0)  aiid 
I 2,2+)= (-+ßt++d3[ßtXß13[2+1) 1 0).  

I~itermediate states 1 2, 2+)  / 1, 2+)  
j 2 , 2 + )  
1 1 , 2 + )  

(ded  (%) !%) (%) 

E =  250 MeV 
Z =  28 

4 .  ß2= 0 3  -- 
ß - 0,s - - - - -  

2 - 
6. 

FIG. 12. Same as in l'ig. 11 for various 0%. 

is larger tliail in the previous case, \TC find the total 
higlier-order effect i-ilucli s~ilaller (Fig. 13). The reasoil 
for this is agüin that for large i! the forili factor / F i 2  
becomes a slnoother function of the scattering angle 8. 

VIII. NUMERICAL TESTS O F  PROGRAM AND 
COMPARISON W I T H  OTHER 

CALCULATIONS 

The numerical evactness of the underlying DWBA 
program is obviously essential for oiir F K T  calculntion. 
This program has been used and tested in v,irious 
c a l c ~ l a t i o n s . ~ ~ - ~ ~  We can reproduce the elastic Born- 
approxiniation forrri factor for E=250 MeV up to 
8= 150' (which is farther bacln~ards than the last 
minimuni at  8= 13.5' in Fig. 3) with an error smaller 
than 10% by setting Z=0.1 wheii calculating the wave 
function of the electron. I t  is importaiit to iind a good 
value for the radius Ra, a t  n hich the numerically 
integrated wave functions are fitted to the point 
Coulomb wave functions for tlie evaluation of tlie 
potential scattering phase. Because of the tail of the 
electrostatic Fermi-type charge distribution, this 
radius must not be chosen too sinall; on the other liand, 
it is difficult to calculate the point Couloilib functions 
accurately if R„ is too large. \liTe found that a t  E- 250 
MeV, R„=8.25 fm gives optinial resiilts for Kib". 
IVhen we intentionallv changed this value to Ra= 
10.25 fm, we found that the f o i k  factor I F 1ß"tself was 
changed by 21% a t  8= 13.5' (Fig. 3 ) ,  while the dispersion 
effect ( 1  F / ß 2 -  1 F IE2)/i F was changed from the 
value 11.47, of Fig. 3 to 177,. I t  seems, therefore, that 
the dispersion effect, though it is a difference effect, can 
be calculated fairly accurately with our prograin even a t  
backward-scattering angles. 

To  have an indepenclent check on the validity of the 
E K T  approach, we compared our calculations with 
Ramitscher's coupled-channel results? A virtual 
monopole excitation is considered, with a transition 
charge density 

42 B. Greiner and 1-1. Arenhövel, Nucl. Phys. A107, 225 (1968) ; where 
A. C. Doiiglas and N. RlacDonald, Phys. Letters 24B, 447 (1967). X= r / z  
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FIG. 13. Same as in Fig. 11 for Cd"*, mhere ~ i t h  our wave 
functions the quadrupole moment in the 1 1, 2') state hecomes 
Q= -55.3 fm2. 

(z being a parameter) and B is determined in terms of a 
cutoff radius R from the condition 

The normalization constant is adjusted in such a manner 
that the total inelastic cross section has a certain value. 
Figure 14 shows Ra-mritscher's coupled-channel results 
and the EKT results for the scattering of 250-MeV 
electrons by Ca40. As usual, we have the maxima of the 
absolute value of the dispersion effect there and only 
there. where the elastic for~n factor itself has minima. 
At these extreina there is an excellent agreement be- 
tween both calciilations. We cannot, however, reproduce 
the two smaller extrema which occur in the coupled 
channel result. 

No direct comparison is possible between our results 
and those of the second-order DWBA calculation of 
O n l e ~ , ~  because closure is used for the intermediate 
states in the latter. But as far as the sign and the order 
of magnitude are concerned, there is good qualitative 
agreement between Fig. 3 and Onley's corresponding 
result. 

IX. CONCLUSIONS 

We have shown that it is quite simple to calculate 
higher-order effects in electron scattering by using the 
eigenchannel theory, because any DWBA program has 
only to be extended by a diagonalization procedure to 
give the higher-order cross sections. Since the coupling 
between the various channels is small, one can calculate 

the matrix S, which includes the higher-order effects, 
with one iteration out of the first-order matrix S.  One 
needs, therefore, only slightly rnore time to compute the 
cross sections for electron-nucleus scattering including 
higher-order effects due to virtual transitions between 
the various channels than to cornpute the cross section 
for the scattering into these channels in first-order 
perturbation theory. 

In elastic scatteriilg we get effects of the order of 12% 
at E= 250 MeV and backward angles. This value is, of 
course, too small to be detected experimentally. I t  
seems. however. that the dis~ersion etiect is at  least 
partially responsible for the disagreement between the 
low-energy fits of the parameters of the electrostatic 
nuclear charge distributions and recent high-energy 
experiment~.~ Figure 7 suggests strongly that the dis- 
persion effect becomes larger with larger momentum 
transfer q. I t  is therefore desirable to extend the cal- 
culations to higher energies. Such work is in Progress. 

Also, our results for inelastic scattering indicate that 
it will be dXcult to measure higher-order effects, since 
these effects show ur, in the minima of the inelastic 
cross sections, while the most accurate experimental 
work is done for low-moment.um transfer q in the as- 
cending part of the inelastic form f a ~ t o r . ~ ~ ? ~ ~  The best 
chance to detect higher-order effects in inelastic scatter- 
ing is, of course, given when the first-order transition 
is strongly hindered, as in Fig. 9, or even forbidden as 
for the excitation of a 0- state from Of ground state. In  
the latter case one of the virtual transitions has to be of 
inagnetic type. Therefore the transverse parts of the 
electroma~netic interaction have to be included in such 

U 

a calculation. Moreover, the retardation and the energy 
loss of the electron should be taken into account to get 
exact results at  backward andes. Existing DWBA 

U ., 
progran~s~~ in which these effects are talcen care of can 
be used as a basis for an EKT calculation. 

FIG. 14. Comparison of Rawitscher's coupled-channel result 
(broken line) mith the corresponding EKT result (unbroken 
line) for the dispersion effect in the elastic scattering of 2.50-MeV 
electrons hy Caa0 with a virtual monopole excitation. 
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Besides the retardation, the only other approximation 
in this work is the neglect of the interior basis state with 
a radial quantum nuinber +z#O. We showed, however, 
in Sec. I1 that these neglected states cou~le  about 20 " 
times more v~eakly to the first-order transition than the 
weakest-coupling cliannels that were taken into account. 

Another Open question is, of course, whether our 
nuclear model, which is, of course, very schematic, gives 
an appropriate representation of the possible virtual 
states. We take only a few discrete states of the whole 
spectrum of electron-nucleus scattering into account, 
namely, those such that the energy loss of the electron 
is E 5 2 0  MeV. This is justified as long as one is in- 
terested in order-of-marrnitude results and deals with 

U 

moderate incident electron energies. If, however, the 
incident energy of the electron becomes large, then 
virtual excitations into the quasi-elastic peak, or even 
virtual meson production, could play a role in the dis- 
persion effect, inasmuch as we found that the dispersion 
effect depends on the energy loss of the electron in a 
virtual excitation only through the interaction niatrix 
elements (Sec. 111). Moreover, these states form a 
continuum (as does the giant resonance in a more 
realistic model). The nuclear continuum ~roblems 
which arise in electron scattering have recently beer: 
treated by applying the EKT to a nuclear shell-model 
Hamiltonian, while the electron was treated in Born 

appro~imat ion.~~ To include higher-order effects one has 
to apply the EKT to both the electron and the escape 
nucleon. Such a two-particle EKT has also been 
f o r m ~ ~ l a t e d . ~ ~  

An actual calculation of this type will, however, be 
very involved. I t  therefore seerns advantageous to 
consider the closed forms (42) (in which no explicit 
reference is made to the intermediate states) or (41) 
(which can be evaluated by the use of sum rules) for 
further applications of the eigenchannel theory to 
electron scattering. 
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The vector analyzing power D2 (8) and the tensor analyzing powers Daa ( B )  and [D11 (8)  - D22 (8) ] of the 
H2(d, p )  H3 reaction have beeil mcasured at  a inean dcuteron energy of 140 kcV using a bcam of polarized 
deuterons from the Yale polarized-ion source and a 100-keV-thick target of unpolarized deuterated poly- 
ethylene. The results for the vector analyzing power are in agreement with previous measurements by 
Ad'yasevich et al. a t  100 and 200 keV and are consistent with a theoretical treatment by Rook and Goldfarb. 
In the notation of this treatment, the results are B3/Bo=0.32110.059 and B4/Bo= -0.036rt0.042. The 
results for the tensor analyzing powers are in reasonable agreement with a previous measurement 
by Ad'yasevich et al. at 165 keV and are not consistent with the Rook-Goldfarb treatment in that a small 
contribution from quintet-state reaction matrix elements is apparent. The experimental results for the 
tensor analyzing powers are given by B6/Bo= -0.05910.015, Bs'/Bo= -0.556st0.102, and B,/Bo 
= -0.413&0.152.The quintet-state contributions, in the notation introduced in tliis Paper, are measured to 
be Bp/Bo= -0.148rt 0.084 and B~~/Ba=0.002st0.009. A calculation is made in which the assumptions of the 
Rook-Goldfarb treatment are relaxed in order to allow nonvanishing s-wave quintet-state reaction matrix 
elements. Explicit expressions for the various contributions of these reaction inatrix elements to the differen- 
tial Cross section are presented. 

I. INTRODUCTION the subiect of a nreat number of investigations, both 
U 

theoretical and experimental. The main point of interest SINCE its discover~ b~ Livingston, for the earliest worli ~vas  the 1936 discoveryl that the 
Lewisl in 1933, the H"d, PIH3 reactiOn has been angular distribution of the outgoing protons was - - - -  
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Based on a dissertation submitted by R.I.S. to the faculty lO0 keV. This fact indicated that contributions of Yale University in candidacy for the Ph.D. degree. 

1 Present address: Oregon State University, Corvallis, Ore. to the reaction were important a t  these low energies. 
97331. 
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