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Higher-order effects are calculated in the framework of the eigenchannel theory for elastic and inelastic
electron-nucleus scattering in the energy region 100<E<250 MeV. A dispersion effect of about 129, is
found for the elastic scattering on Ni%® at a momentum transfer ¢ =500 MeV/c. For inelastic scattering, the
reorientation effect is discussed, in addition to the dispersion effect. The total higher-order effect changes
the form factor for a hindered first-order transition by 509, at its minima. Furthermore, the dependence
of the higher-order effects on the transition potentials of the virtual excitations, the model dependence, and
the dependence on the energy E of the electron and the momentum transfer ¢ are discussed. A closed formula
for the .S matrix is developed by calculating the eigenchannels in stationary perturbation theory.

I. INTRODUCTION

IGH-ENERGY electron-nucleus scattering has
been proved to be a successful tool for investiga-
tions of the nuclear structure. The main reason for
this is that the interaction between the electron and the
nucleus is well known, which facilitates the analysis of
the scattering data. Besides the earlier more general
review articles of Hofstadter,! we refer in this con-
nection to the review paper of De Forest and Walecka?
on the theoretical aspects of electron-nucleus scattering.
The analysis of a scattering experiment is made in the
following manner: One assumes a nuclear model with
certain charge, current, and magnetization density
distributions and calculates the cross section in first-
order perturbation theory, where either the electron is
treated as a free particle [Born approximation (BA) ] or
the static Coulomb field is taken into account exactly®*
[distorted-wave Born approximation (DWBA)].

An open question was: How much are the results
modified by taking into account higher-order effects in
which two or more virtual quanta are exchanged be-
tween the electron and the nucleus? Estimates were
made in second-order Born approximation.>® It has been
pointed out, however,? that one has to start with correct,
i.e., distorted, wave functions to get reliable results on
the higher-order effects.

This was done by Rawitscher,” who considered a

* Work supported in part by the Deutsche Forschungsgemein-
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University of Virginia; also supported by a computer grant from
the Computer Science Center of the University of Virginia.
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virtual monopole excitation in a coupled-channel
calculation for the elastic scattering of 250-MeV
electrons by Ca%. A relative effect of /59, is found at
those scattering angles where the elastic cross section
has minima (Fig. 14). Recently, second-order per-
turbation theory with distorted waves was employed
by Onley 8

Related to the coupled-channel method is the
eigenchannel theory (EKT) of Danos and Greiner,?
and co-workers,® which has been applied to a number of
nuclear reactions.” The EKT has also been formulated
for high-energy electron-nucleus scattering,® where,
in contrast to the case of nuclear reactions, the S
matrix can be found after a single iteration. First
results, which have been reported elsewhere,’> showed
that higher-order effects give contributions up to
10-259 to elastic and 50-1009, to inelastic form factors
for a target nucleus with Z=26 and an incident electron
energy of E=200 MeV.

In order to give here a more complete investigation of
the higher-order effects, we present in Sec. IT the EKT
construction scheme for the .S matrix. By applying
stationary perturbation theory we are then able to
derive in Sec. III a closed formula for the .S matrix
which illuminates some of our later results. In Sec. IV
we specify the nuclear model. The following properties
of higher-order effects in elastic scattering are then
treated in Sec. V: the dependence of the effect on the
properties of the intermediate transition potentials, the
atomic weight 4, and the nuclear model. Furthermore,
the effect is calculated as a function of both the in-
cident electron E and the momentum transfer ¢. In
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Frc. 1. Inner and outer space for the £ W,
construction of the .S matrix. Because W, - et

of the matching condition at ¢=10° fm,
the inner energy Wi of the electron does
not coincide with W= E— Ey 1. Because
of the coupling of the channels, the
energies 7° and £! do not coincide with
E. This can be reached by a renormaliza-
tion of the eigenphases.

Sec. VI, the corresponding investigations are made for
inelastic scattering. Up to this point we have con-
sidered only virtual transitions to nuclear states other
than the initial and the final—a situation in which the
higher-order effect is called (in analogy to optics) a
dispersion effect. However, under certain circumstances
it is also possible that virtual transitions occur
between the various magnetic substates of a nuclear
state. This effect is well known from Coulomb excita-
tion and is called the reorientation effect. This effect is
discussed in Sec. VII together with the dispersion effect.
Details on the numerical accuracy of our program are
given, along with a comparison of our results with those
of other authors, in Sec. VIII. In Sec. IX the results are
summed up and some conclusions are drawn.

II. EIGENCHANNEL THEORY FOR ELECTRON
SCATTERING

For the construction of the S matrix, we divide the
total Hamiltonian H of the scattering problem into

H= Htarget+ Hp article+Hint
=H 0+ H int ( 1)
and look for eigenfunctions ¢ of H that become super-

positions of eigenfunctions of H, in the asymptotic
region, where Hin is supposed to be negligible:

II/N Z (Aclc+BcOc) e

<

(2)

Here I, and O, are the ingoing and outgoing spherical
waves of the particle, and ¢, is a channel wave function,
i.e., the wave function of the nucleus coupled with the
spin-angular part of the wave function of the electron.

The S matrix transforms the amplitudes of the

incoming into the amplitudes of the outgoing waves:

B.=— Z SeerAer. (3)
of
Thus (2) becomes
lﬁf\' z (Aclc— z, Scc’Ac’Oc’)‘Pc~ (4)

The amplitudes 4, are determined by the condition
that ¢ should describe a plane wave in the entrance
channel.

Time-reversal invariance implies that the .S matrix
is unitary. Moreover, its submatrices ST* of a given
total spin 7 and parity m are symmetric.!® Therefore,
ST= can be diagonalized by the real, orthogonal matrix
VI=7 and the following eigenvalue equation exists:

Z Sl TV Imr= exp(2i607) VIm, (5)
¢!

The phases 67" are the eigenphases, and » denotes the
various eigenchannels, of which there are as many as
there are open physical channels. Assuming that the
amplitudes 4, of the incoming channels are the V. I-=»1
the wave function in the vth eigenchannel is

Yy~ 3 V(e I—e00) g (6)

For the further evaluation of this expression, we have
to specify the physical channels {c}.

We assume that the target nucleus has a set of dis-
crete energy levels {a, J*}, which are labeled by the
index a, so that the nuclear spin J is a redundant index.
Since we deal with relativistic electrons as probing

18 })3 P. Wigner, Group Theory (Academic Press Inc., New York,
1959).

1 Because we will subsequently always consider the subspaces
of fixed total spin I and parity «, we will drop the indices / and
7 whenever no ambiguity arises.
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showing how the unperturbed total inner
energies I, are arranged in multiplets.

l Fic. 2. Enlarged section of Fig. 1,
! Since the perturbation is small, the

W= M0 =52

—_—

|

perturbed energies £’ are arranged in
similar multiplets. The differences fe,0—
| L are of the order 3X10™* MeV and are

thus much smaller than the energy loss
[ of the electrons in the excitation of an
intermediate state.

r(fm)

particles, the Hamiltonian H, is given by
H0=Hnucleus+HDirac ] (7)

and the electrostatic field of the nucleus has to be
included in Hpirae because of its long-range properties.
Making a partial-wave decomposition of the wave
functions, we have in the asymptotic region, where
kar>>1(l14-1), and in the high-relativistic-energy limit!

cos[kar+y In2ker—3(1+1)7+6"]
‘PVNZVQ.K' a,Ke
ax —isin[kar+yIn2kr—3(H1)7+6"]

®

The wave number %, and the energy W, of the electron
are given by energy conservation,

ka= Wa/ﬁ0= (E'_ EN,a)/ﬁ/Cr (9)

where E is the incident energy of the electron and
Ey .o is the nuclear excitation energy. The logarithmic
phase yIn2k.r=Ze*/fic In2k,r comes from the static
Coulomb field. The channel wave function is given by
the nuclear wave function | «, J, J,) coupled with the
spin-angular part'® of the solution of the Dirac equation
X4+ to a total spin I:
x*

Pax=r" Z (j,f, u I—p I I, I)l a,J, I_I">

» x__‘“

(10)

Here we have set (I,)=1, since the rotational invariance
implies that the S matrix does not depend on (I.).
The eigenchannel wave function (8) represents a
superposition of standing waves with a common
phase—the eigenphase—in all physical channels. We

15 M. E. Rose, Relativistic Electron Theory (Wiley-Interscience,
Inc., New York, 1961).

can compute the eigenphase §” and the eigenvectors
Ve?, and thus the .S matrix (5), by matching the solu-
tions of the total Hamiltonian H to these standing
waves. To achieve this, we introduce a cutoff radius'® ¢
and evaluate there a set of boundary conditions, which
the interior solutions of H have to meet. In the case of
potential scattering, where H;,=0, these interior
solutions are given by

&, ~a 1

cos[kar+y In2kar— 3 (14-1) 7480 10t ]
X N Pa
— i sin[Kar+y In2kr—3 (14 1) 7+ 64,2°¢]

(11

in the asymptotic region; the normalization is in a
sphere of radius a. We can obviously match these
solutions to the standing waves (10) by continuing
them into the outside region where r>«, and get
thereby

Fa=ke and §7=03, Pot=23, 2o

(12)

Thus, the eigenphases are equal to the potential
scattering phases in the physical channels. Now when
Hj, is included the various physical channels are
coupled and the interior energies are no longer equal to

18 For our following calculations, we choose a=10% fm. Since
we deal with electron energies up to 250 MeV and angular mo-
menta up to 27, the condition ka>>I(I41) is always fulfilled, and
it is thus justified to deal with asymptotic wave functions at the
boundary radius. In principle, the choice of ¢ has no influence on
the S matrix in the EKT, as long as the range of Hjy, is smaller
than ¢ (note that the most critical ! term of the multipole
expansion of the electromagnetic interaction is already included
in Ho) and the nuclear wave functions guarantee channel orthog-
onality in the interior region. For the iteration procedure as
developed below, however, it is convenient to choose a large a.
On the other hand, this can lead to numerical difficulties in the
evaluation of the transition matrix elements.
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E as in (12), but are shifted by a certain amount
(Figs. 1 and 2), and the eigenphases have to be shifted
accordingly to yield the matching condition. Since one
expects this shift to be small from a simple schematic-
model calculation, the wave functions (11) serve as an
excellent basis for the diagonalization of the total
Hamiltonian in the interior region.” Applying the
matching condition to the basis set, we get

tan[Kq (8*) a+y In2fe (67) 84 0% ]

= tan(kq.o+vyIn2k.a+8") (13)
or

ko (8”)aty In2f, (87) a+ 5, (2o

=koo+y In2k,a+6"+nm, (14)

for the interior wave numbers £.(6”), which are a
function of the still unknown eigenphases §”. For the
subsequent discussion, it is now important to notice
that the potential scattering phases are only slowly
varying functions of £,. This is because we deal with
incident electron energies E of 100<E<250 MeV and
are thus far-off resonances of the electron above the
static potential (Fig. 1). Also, since the logarithm is a
slowly varying function of £, (2k.a~~10° for E=100
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MeV and ¢=10° fm), we can cancel the logarithmic
terms and drop the tilde above the potential scattering
phase 8, ,7°% Thus (14) becomes

£a(8) = kot a1 (8" — 80 Pot+nrr) . (15)

A necessary condition in going from (14) to (15) is
that the excitation energies between the various states
| @, J£) are not too high, because only then does the
condition | §”—6,,°t | <1, which guarantees that the
ko are close to the k., hold.®® We choose now a certain
channel {¢o} = {a, ¥} and make for all eigenphases the

same ZerO-Ordel’ ansatz
V= 6cop°t= g ko™t

(16)

With the help of Egs. (9) and (15), we then get for
the interior energies

B, .= E+ (Fic/a) (80t — 8,7°+nrr) 7

where # is an additional radial quantum number. The
diagonalization of the matrix of the total Hamiltonian®

<§)a,x,n l H l &)a’,x' ,n’>=Ea,n,naa,ﬁ(,n;a’,x’.n’
+ <@a,x,n ] Hint l q’a',x' ,n’> (18)

is equivalent to the solution of the secular equation®

ﬁc (6cop0t_ 601p0t+ %1‘"‘) + <CI)01 M1 l Hint I q)cl Jn1 > M <(I)c1 ,n1 I Hint | q)cM,nM>

atdet oo

ces =F—E, (19)

T fic (8eP®t— 805+ 4m) + (Pepgnp l Hine l DBopgnp)

where M=NXN’, N being the number of physical
channels which can be coupled to a total spin 7, and
N’ the number of radial quantum numbers # of the
basis set which are taken into account. The off-reso-
nance argument leads again to the conclusion that the
matrix elements on the left-hand side of (19) vary only
slowly with the energy. The matching condition, i.e.,
the vanishing of the right-hand side of (19), can thus
be fulfilled by subtracting the right-hand side from the
entire equation, or, equivalently, by renormalizing the
eigenphases:

8= B a4 A8 = b0 u*'— (' — E) (a/Fic) . (20)
A prescription has still to be given on the particular
choice of the £” in (19), because there are M= N XN’
eigenvalues £” but only N eigenchannels. The unper-
turbed energy levels K, [Eq. (17)] are ordered in
multiplets for every radial quantum number » (Fig. 2),
because the differences between the potential scattering
phases are much smaller than = if the energy loss of the
electron is not too large. Since the perturbation is small,

7 Because of the large incident energy of the electron, we can
neglect the electronic bound states, which must be taken together
with the states 4,. to form a complete set.

the perturbed energies E» are arranged in a similar
pattern of multiplets. To get the best values for the
eigenphases, it is then convenient to take for the
renormalization of the eigenphases (20) those £” of the
set which correspond to #=0 and which lie in the im-
mediate vicinity of E, because then the renormalization
will be smallest. In our actual calculation, we dropped
the states with #>0 from the beginning. Applying
first-order perturbation theory to the interior stationary
states (17), one sees that the ratio Q of the admixture
coefficients of a state with =21 and a state with
n=0 is determined by the energy differences between
these levels and the eigenchannel. These energy dif-
ferences are proportional to the phase differences (17),

18 Typical values of | 8 —8, .70t | are 1.5X 1071 at E=200 MeV
and anenergy loss of 5 MeV (see Ref. 11). Therefore, | Wo—We |=
(he/a) X1.5X1071~ (3X10 fm)a~* MeV. This corresponds to
| 8 POt — 84 420t | 23X 107207, where @ is in fm. The potential
scattering phases themselves can, for numerical reasons, only
be determined up to an accuracy of about 5X 1078,

19 Although the interior radial wave functions of the electron
are not orthogonal, because they obey different boundary condi-
tions in different channels {a} [Eq. (15)], the orthogonality
of the wave functions @, 1s guaranteed by the orthogonality
of the channel wave functions. Because |JJa—We|<K1 (see
Ref. 18), we also dropped the tilde in the matrix elements of Hys.

2 A factor ¢! can be taken in front of the interaction matrix
elements because of the normalization of the interior wave func-
tions of the electron.
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so that we get (Ifig. 2)

Q= max | §q Pt — o o™ | /75 Y. (21)
Because of the weak coupling, the admixture coefficients
of the states which are taken into account are very small
themselves, namely, of the order 5)X107%2., Thus the
neglected states would give contributions of the order
of 0.25% to the .S matrix. In reality, however, the error
will be even smaller, since one expects the contribution
of states with opposite sign of 7 to cancel.

With the eigenphases 67 and the eigenvectors V..,
which are given by the diagonalization of the .S matrix,
we can compute the .S matrix

Sa,x;a/,x'l”'= Z Vo mr eXp(Ziafnr,v) Var olmo, (22)

The differential cross section for the excitation of a
nuclear state | o/, J') from a state | &, J) is then given
byll

(&) -~ S X

aQ T ke 202J41) 5 1t
X5 0,74, 74T, v I, M)
X 5w =77 5w (7T w1, M)
X (Sar s and k™8t 07 w000 ) Yir e (Par) 2, (23)

where the incident beam travels in the z direction, and
Par is the direction of the scattered electron. The form
factor is defined as

l F 12: (da/dﬂ) /O'M()u;,

where the Mott cross section is given in the high-
relativistic-energy limit by (8 is the scattering angle)

omots =4 (Ze?)2E2 cos?(36) / (2 sinf)4. (25)

As initial values for the one-step iteration procedure
for the .S matrix we need the potential scattering
phases d4,,*°t and the matrix elements of the interaction
Hamiltonian Hi,s. These quantities are computed with
a code previously used for DWBA calculations.?—%
Because the higher-order effects show up in differences
between the DWBA form factors Fp? and the EKT
form factors Fz? it is useful to make a DWBA calcula-
tion parallel to the EKT calculation. For this we have
only to replace the S-matrix elements in (23) by their
first-order DWBA values. These are

iV (2041102

(24)

Sesmias ul ™= exp(26a,>°t), (26)
for elastic scattering, and
S st i 7= — (2ia/Hic) €XPi (B P+ 0r o)
X ®ar w0 | Hint | Baw).  (27)

(129‘ D). Drechsel, Nucl. Phys. 78, 465 (1966) ; Z. Physik 192, 81
60) .
2 D. Drechsel and C. Toepffer, Nucl. Phys. A100, 161 (1967).
% C. Toepffer and D. Drechsel, Z. Physik 210, 423 (1968).
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With these expressions introduced into Eq. (23) for
the differential cross section, one gets, alfter some
recoupling, the conventional formulas for the elastic®
and the inelastic?23 differential cross section.

III. CLOSED FORMULA FOR S MATRIX

Although we will use in the following calculations the
above-described diagonalization procedure, in which
explicit reference is made to the intermediate states, it
is very convenient for the interpretation of our results
to apply the conventional perturbation theory to the
states (17) and to give the .S matrix (22) as an ex-
pansion in orders of Hips.

In zeroth order, the physical channels and the
eigenchannels are identical, and we have

{V}z {60},
ch= Vcco= Ac,cm

—_ — 1
87 = b= 8,7,

(28)

where we denoted the Kronecker é by A in order to
avoid confusion with the phases 8. Introduction of (28)
in (22) gives the S matrix in zeroth order:

Seor= exp(2i6:°°%) A,

which is identical with (26).
In first order, we have for the admixture coefficients

(29)

VCCO=H000/<E00_ E~C); c# 6o
=1, =0 (30)
with
f]woz <(I)c,0 l Hint l cI)co,0>7
and the eigenphases, according to (20), are
8= 6,0t — (Eeo— E) a/fic
= 0,,P0— (Eco* E+Hy,)a/fic
=007~ (a/Tic) Heye, (31)

because by construction &,,=E. Then S is, up to term
linear in Hint,

Scc’= Z Vcco eXP(Ziﬁco) Vc,ﬂl)
co

= exp2i[ 8>t — (a/7ic) Hee |Acer

+ Ver© exp(2i62°8) + V. exp(2id.7t).  (32)
We have then for the diagonal elements
Sec= exp(2i8,>°%) [1—2i(a/fic)H..], (33)

i.e., an additional term, which becomes important if
the nuclear state {c} has, for example, a static quad-
rupole moment. For the off-diagonal elements we note
that [from (17) and (30)]

Hc’c a Hc'c
B—Fy  Ticosmot—opot’

Vc,cz - Vcc,z (34)
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Then we have

Seer=expi (8ot 8,70t) [expi (8,7t —
— expi(8ePt—08.2°%) [ (a/fic) Herof (8,°6—8,20%).  (35)

Under the condition that the energy loss of the electron

is not too high, so that |8Pot—gpot | <1, one can

expand the exponentials in the second factor, and one
gets

Seor=Spre=—2i(a/Tic) expi(8:>°+8.7°t) Hyre,

which corresponds to (27).
To get S.. up to terms quadratic in Hin, we need the
second-order admixture coefficients

aclpoc)

(36)

Veo=1—3% >/ | Ho. |2/ (B~ E. )2, c=2¢o
o
= H oo/ (B.,— E,)+ (second-order terms), c#co
(37)
and the second-order energy shift
l HC C(] [2
c0— . 38
E 0 E Hcoco+ Z Eco Ec’ ( )

We have then for the diagonal S-matrix elements

I Hc’c ]2
== —1 fa
Scc (1 2 CZ, (Ec_Ec’)2>

, | Hee I)
pot— —— Hec 7]
X exp2i (6 he fw 2 E i

)

| He.
(E Ec')2

X (1—— Z

HCC
X exp (266, == (39)
Ecg”‘ c
o ¢ 78 pot — ¥ g —_— ‘ Hc i ]
exp (246,7°%) [1 2 ﬁcH -2 e %, i_F.,

l HC ‘c l
— 2 S
X exp2i(8,Pot— 8,20t He
exp2: (8, ST h

If one expands the exponential in the last term up to
quadratic terms, the third and fifth terms of the
bracket cancel against the absolute and linear terms of
the expansion, and one is left with

See= exp(28,°°t) [1 Zzﬁ ( ) CZ | H,or |2]

(41)

+ Z c'_Iﬁc]

(40)

% This condition has already been used in the derivation of
the simplified matching condition (15).
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Neglecting the retardation in Hj,y and the energy loss of
the electron in a virtual transition, so that k.=k, we get,
by applying the closure relation® to the radial nuclear
wave functions f.,rs,

2

a a
cc™ 16,00t —2i—— Hy— z
See= exp(2¢6,7°t) [1 2 e 2 (ﬁc)

lel<fa,.l <g.l,x ] Hiut l gJ',x’><gJ’,x’ | Hip l g.l,x>fa,.l>] )
(42)

where the functions f. s and g; « are defined in terms of
the total interior wave function (10) and (11) by

cosLkr+y In2kr— 3 (I4-1) w6, ]
(I)a.x,[)— a 1
— i sin[kr+y In2kr— 3 (1 1) m4-6,70¢]

X
X"__lfa..lz(jyjaﬂyj_l“![)[)!]>[—‘“>< >
K X—KM

=87 far. (43)

Before we interpret (42), let us recall the conditions
on which the iteration procedure is based: We have to
deal with large incident electron energies and a large
cutoff radius a. If the energy loss of the electron in a
virtual excitation is not too large, so that the phase
differences are small, we can drop the tilde above the
potential scattering phases (15) and the interior wave
functions (18) and also neglect the states with ns20.
Also, because the coupling between the channels is
weak, we can make the same ansatz® for all eigen-
phases, which means that we work in the same Hilbert
space when evaluating different eigenchannels. We find,
moreover, that only one iteration is necessary to get
highly accurate S-matrix elements. The same conditions
are important for the evaluation of (42). In order to
compare these results with the conventional ones
[Eqgs. (26) and (27) ], the tilde on the potential scatter-
ing phases and the wave functions must be dropped,
and explicit use must be made of the small phase
differences. However, there is no need to distinguish
between interior and exterior admixture coefficients
(as in the case of nuclear reactions,’) because we use
only the states with #=0 and construct all eigenchannels
with the same Hilbert space.

Although we made a restriction on the energy loss of
the electron in deriving (41), we may use the complete-
ness relation in going from (41) to (42), because it
seems quite unreasonable that states with an energy
comparable to the incident electron energy (only then
do the phase differences become of order 1) are im-
portant as intermediate states. Should, for example,

% We thank Professor H. Marschall for clarifying discussions
about this point.
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virtual pion production play a role in the scattering of
250-MeV electrons?

We can therefore state that the S matrix depends on
the energies of the intermediate states only through
the interaction matrix elements, because there are no
explicitly energy-dependent terms—such as energy
denominators—in (41) and (42). Equation (41) states
that the second-order contribution to the Smatrix is the
sum of the contributions of the particular intermediate
states, and therefore Eqgs. (41) and (42) open the
possibility of using sum rules for the calculation of
higher-order effects instead of making explicit reference
to intermediate states.

In the following calculations, we shall use the
iteration procedure for the construction of the S matrix,
as outlined in Sec. II, to show that our explicit results
are in accordance with the conclusions we can draw
from the above closed forms (41) and (42) for the S
matrix.

IV. NUCLEAR MODEL

The interaction between the electron and the nucleus
is given by
Huim [ dralon®(xn) = (1/0) iwh* ()], (44)
where &t and At are the retarded potentials of the
electron at the nucleus. The matrix elements of Hi, are
computed using the multipole expansion of Hng ** and
inserting the wave functions @ [of which the asymptotic
behavior was given in (11)7]. Neglecting the retarda-
tion?® and the contributions from the nuclear current
and magnetization, we have for the interaction matrix
elements!?

(q,a,m, l Hint | cpw‘): — 27|.1/2(_ 1)1—J'—I+j+j’+1/2
XL(241) (2+1) % 37 (A1)
A

iiONfI N
X L1+ (=1
J J I\ 0

—1
2
>< / dre rﬁ(fa’,x’ fa,x+ga’,x’ga.x)]a../»a'..f’()\) (re)) (45)
0
where
J o= [*aryne [ doy TS
a, J>al, J =€ . YN 7, ‘N 1’>)‘+1

X("‘I, J! ” PNYR(QN)H a’J> (46)

2 F, Scheck, Nucl. Phys. 77, 577 (1965).

271., C. Biedenharn and P. J. Brussard, Cowlomb Excilation
(Clarendon Press, Oxford, 1965).

28 Consistently, one must then also neglect the energy loss
in the transition matrix elements. This means that there is no
dependence on the energy of the intermediate states at all in
(19) and (42). Moreover, one must also neglect the energy loss
in the phase differences in (19) and (42) in order to compare
| F|g? and | F |p? consistently for inelastic scattering. This was
not done for | F |g*in a previous publication (Ref. 12). and there-
for the dispersion effects for inelastic scattering turned out to be
somewhat too large there.
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is the transition potential. The radial wave functions f
and g of the electron are solutions of the radial Dirac
equation®®:

¥ _ 1 WV
dr 7 fic ’

(47)
&y _W=V0) 1
dr fic r g

These coupled equations are integrated numerically up
to a certain radius Rmax and the resulting wave functions
f and g are inserted in (45), where the integrals can
then be computed up to Rmax. For Rmax<r.<a we use
the asymptotic expansions for f and g up to terms of the
order O(k.r)~2, with which the remaining integral can
be calculated analytically.®

The static potential V(r) is the solution of the
Poisson equation

V2V (1) = 4mepes (1), (48)

where py(r) is the model-dependent charge density of
the nucleus. In our calculations we will use a spherical
Fermi distribution®

pst(7) = Zepo(7), (49)
()= 3/4nc? 1
PN = 1 (wa/0)— 6W5(0, a/c) 1+ expl (r—c) /a]
(50)
and
a=1/41n3. (51)

¢ is the half-density radius, ¢ is the 90-109%, surface
thickness, and W3(0, a/c) is a function defined in
Ref. 30.

In order to calculate the interaction matrix elements,
we further have to specify the excited states of the
nucleus. In the spherical medium-heavy even-even
nuclei, the nuclear spectrum can be described fairly
well by the collective model with two different kinds of
modes: (a) 7'=0 vibrational modes for the low-energy
states, and (b) 7=1 giant-resonance modes for the
high-energy (E>15 MeV) states. For the vibrational
states we use the harmonic-vibrator model in which
the charge-density operator is given by

on () =pg(r)—7 d;:t 3 (A1) E[aM X YN0 (52)
A

to first order in the collective coordinate a,™. To in-

2 This is not possible if the transverse part of the interaction
is included in (45). One must then choose a smaller cutoff radius
@ with ¢= Rmaxe

8,T. Schucan, Nucl. Phys. 61, 417 (1965).
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clude second-order terms we extend (52) by®!:32

pn (1) =pas(r) —7 d;:t > (A1) V2 N X o
by
o T (3 (A1) [aMX YNz, (53)

dr? A
The collective coordinates e, can be written in terms

of creation and annihilation operators for surface
phonons:

0= B (A1) LB (=) 48, M. (54)

Here the effective deformation 8, is related to the mass
and force constants By and Cy in the Hamiltonian of
the harmonic vibrator by

e (B - (B o

where wy=(Cy/B\)Y? is the oscillator frequency of
multipolarity A. We can now calculate the transition
potentials between all vibrational states including the
ground state, which is by assumption a Ot state.

In Eq. (53) for the charge-density operator the
parameters of the higher terms are fully determined by
the parameters of ths static charge distribution. In
order to fit the experimental inelastic cross sections, it is
convenient to loosen this restriction by allowing for
different parameters in the derivations of the charge
distribution. Then we have

d N,
o () = puy () — Zer ;”," by éf (A1)

X [aMX VN0 Zey? ip—: > (Ni (A1)
drt T \Bx

2
X [a[)\] X I/'D\]]IO] ) (56)
with?
(r) _ 3/47!'6(;1-3
Po 1+ (7@er/ 6tr) 2— 6W 3 (0, @or/Cor)
1
(57)

e ——

The strength constants V) can be adjusted to give the
correct reduced transition probability, which is defined

3L L. J. Tassie, Australian J. Phys. 9, 407 (1965).

A consistent derivation of the nuclear charge-density operator
[D. Drechsel, Z. Physik 181, 542 (1964) ], starting from a static
uniform charge distribution, gives a first-order term with a radial
dependence ~dpy/dr and two second-order terms with a radial
dependence d?p/dr® and dpg/dr, respectively. All these expan-
sions of py(r) have in common that the resulting transition
densities have a peak of a width =1 at the nuclear radius.

"ZIn the following calculations, however, we always use cir=¢
and g, =a.
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as
B(EN, OF—\+) = Kﬁw / dr Moy (1) Vs 0>l
=722N2 (2 +1) 12, (5%
with
o) de
h= f s 20 g, (59)
0 ~dr

The reduced transition probability is in turn related, up
to first order, to the effective deformation 8 by*

B(EM, 0t—X\*) =[3/(4r) ZeR> B2,

with Ry=1.24"3 fm.
The transition potential (46) is then, upon insertion
of (56), up to first-order terms,

Jorone W= —ZEN\(2\+1) 12

(60)

X (n,""x / ) dr 3 e +7’e)‘/- dr r2 dﬂ) . (61)
0 dr Te dr

For the giant resonances we use the dynamic collective
model due to Danos, Greiner, and co-workers®:® The
giant dipole mode consists of an out-of-phase motion of
protons and neutrons, for which the symmetry term of
the Bethe-Weizsdcker formula gives the restoring
potential. Because of the change of the radii of the
principal nuclear axes in a vibration, the giant-resonance
modes are coupled to the vibrational modes, which we
discussed earlier. This coupling leads to a splitting of
the giant-resonance states. It has been shown that the
main peaks in the giant-resonance region are 1~ states,
where dipole phonons df and quadrupole surface
phonons 8T are coupled:

| &, 17)= padt+go[d" X 1] 1+ higher terms. (62)

In the charge operator (56) a term must be added
which describes this mode. The transition potential for
a dipole transition into such a state is given by

Ja 7oar iD= 25O
X (!, 17 [[(@'+d) + Saal (d"+d) X (8'+8) 47 [la, ),

(63)
where
Saa=—So®Bs/V2

and S@ and S,® are given in Ref. 16.

(64)

3 0. Nathan and S. G.Nilsson, in Alpha-, Beta- and Gamma- Ray
Spectroscopy, edited by Kai Siegbahn (North-Holland Publishing
Co., Amsterdam, 1965), Chap. X.

% H. J. Weber, M. G. Huber, and W. Greiner, Z. Physik 192,
182 (1966) ; 192, 223 (1966); M. G. Huber, H. J. Weber, M.
Danos, and W. Greiner, Phys. Rev. 155, 1073 (1967).

3 The properties of the dynamic collective model are also
discussed in the review articles by M. G. Huber, Am. J. Phys.
35, 685 (1967); H. Arenhovel and W. Greiner, in Progress in
Nuclear Physics, edited by D. M. Brink and J. Mulvey (Pergamon
Press, Ltd., Oxford, 1968), Vol. 10.
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F1c. 3. Elastic form factors | F |p* (DWBA) and | F |2 (EKT)
for £=250 MeV, Ni%, and 8,=0.3, The wave functions of the
intermediate_states are | 1, 2+)=g%10), |2, 1-)=47|0), and
|3, 17)=[d"xBT]u"1]0). The broken lines in the nuclear spec-
trum represent the major virtual transition modes.

We will first consider in our calculations the ground-
state with

|, J)=10,0")= | 0), (65)
and, in addition, a vibrational 2% state with
I aa]>: | 1) 2+>=6T l 0); (66)

and two 1~ giant-resonance states with

|, J)=12,17)= (pd’+@[d"XBT]H )| 0) (67)
and

Lo, J)=| 3, 17)= (psd™+q[d"XBT]H )| 0), (68)

where in the last two wave functions the pairs {2, ¢}
and {3, ¢s} must be orthornormal. We have then to
consider the following transition potentials® for the
construction of the matrix (19):

J(),0+_,1,2+<2)= _‘Z(Z?Nz(‘\/S)
Te d a d
X (re“"*/o dr 1’ ﬁ +r2 /r“ dr E‘;-O) , (69)

T2 1031~ = —ZN V3 (pogs+Qops)
Te dPO /a dpo)
8 dr 5 =22 2 dr =),
><<r /0 7 dr—{—r . rdr

3 We neglect the octupole potentials J1 o+-4,1—®), the monopole
transition potentials between the 1~ states, and the reorientation
in the 1~ states. The latter two transition potentials result from
the two-surface-phonon terms in py.
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from (61); and
Jopra2,1-0= VIS (patg25ad) s
Jo.0t3.1- 0= V35O (pstqsSaa)
Tt ota0,- 0= eV3SO (got p2Saa),
Ji g3, 0= V35O (g5 p3Sua),
from (63).

(70)

V. DISPERSION EFFECTS IN
ELASTIC SCATTERING

Unless otherwise specified, we use for our following
calculations a nucleus with Z=28, 4=758 (Ni®), which
has a Fermi-type static charge distribution with param-
eters c=4.28 fm and {=2.49 fm; the effective deforma-
tion is taken to be B.=0.3, which corresponds to
B(E2, 0+—2t)=1872 ¢ fm* [see Eq. (60)]. The
nuclear spectrum is shown in Fig. 3, which also shows
the form factors | F |p? and | F |g* for elastic scattering
of 250-MeV electrons and their absolute difference
which is caused by virtual excitations to intermediate
states.

In the following we will call the relative quantity
(| F|p*— | F|g®)/! F |p* the “dispersion effect” and
discuss its properties.

A. Dependence on Intermediate States and Virtual
Transition Potentials

We repeated the calculation which led to Fig. 3 for
E=225MeV in three ways: (1) keeping only the 2+
intermediate state, (2) keeping only the 1~ states, and
(3) keeping all three intermediate states. The cor-
responding dispersion effects are shown in Table I
near the three minima of the elastic cross section. The
total effect is always the sum of those with different
virtual excitation modes, but the dispersion effect
resulting from a virtual excitation to the 1~ states has a
different angular dependence from that resulting from a
virtual excitation into the 2+ state. The former gives the
major contribution at small angles, the latter at back-

TasLE 1. Dispersion effect in elastic scattering for E=225
MeV, Z =28, 8:=0.3, at angles near the minima of the first-order
form factor | F [p?, with various possible intermediate states in
the head line. The wave functions of the giant-resonance states

are | 2,17)=(§V3dT+3[dtXptI07) [0) and  |3,17)=
(—3dt+3v3[dtXptI00) | 0).
Intermediate states 2,17) 2,17)
['1,2%) 3,17) 3,17)
(deg) (%) (%) (%)
0=50 <0.1 1.5 1.3
0=95 2.3 2.4 4.7
=172 12.3 ~0.1 12.4
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ward angles.® To clarify this, we write Eqs. (23) and
(26) in terms of the form factors:

l F IE2N l ;f([, 0) (Sa.s o vl — 1)‘2 (71)

and _
‘ F ‘Dz"’l ;f(ly 0) (Sa,J.k;a’,J',x’I_ 1)\2 (72)

These formulas differ only in the S-matrix elements;
thus, writing
AST=81— 8T, (73)
we have for the dispersion effect in matrix notation
|Flp*= | Fl&* X Rel S, 0)f*(I,6)(S7—1)AS"™|
Pl [ 3007, 0) (SF=1)p

(74)

Now, by comparison with (26), one finds that AST is
given simply by the last term in (41) and (42)%:

S| Hewr |2] , (75)

c!

a 2
AST= eXp(Ziﬁll’Ot) [— 2 (ﬁ;)

i.e.,, AST is a complex number, of which the argument
2i87t is independent of the intermediate states; its
absolute value, however is, the sum of the contributions
of the virtual transitions to the different intermediate
states. Now in the final sums (71) and (72) for the
form factors, the S-matrix elements are added co-
herently, and therefore dispersion effect depends on the
scattering angle.

IFR- 112
S
s IFIZ
11,2 e E= 250 MeV
100y—& % Zz= 28
20
V= 135
5
10
5
= 83"
001 009 o6 p2

I'16. 4. Dependence of the dispersion effect
(I F o= Fle) /| F|p*

for elastic scattering on the square of the effective deformation
B at scattering angles near the minima of | F |p%

3 A similar calculation at E=175 MeV shows that this is
indeed an effect depending on the scattering angle in this energy
region.

3 ., becomes zero in our model, as long as no reorientation
(Sec. VII) is considered.
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I1e. 5. Dispersion effect in elastic scattering for Ca%, Ni%,
and Cd", The small arrows above the abscissa indicate the
position of the minima of | F | p%

We discussed already in Sec. IIT the dependence of
the dispersion effect on the energy of the intermediate
states, which was found to enter only through the
matrix elements and is therefore weak. In this calcula-
tion, this dependence vanishes completely, since we
neglected retardation and consequently the energy loss
of the electron.

Another question is how much the dispersion effect
depends on the B(EN) values of the virtual transitions.
We considered again a 2t state as intermediate state
and calculated the dispersion effect for various effec-
tive deformations 8. From (75), we expect AST to be
proportional to @s%. Since in elastic scattering ST is
independent of Bs, we expect from (74) that the dis-
persion effect will be proportional to B8s*. This propor-
tionality is confirmed by our actual calculations
(Fig. 4).

Because g*~B(EN), one may make the generaliza-
tion that for every intermediate state the dispersion
effect is proportional to the B(EN) of the corresponding
virtual transition, as long as the other parameters
entering in the definition of B(EN) [Eq. (60)], i.e., Z
and Ry, are fixed. No quantitative theoretical predictions
can be made on the dependence of the disperion effect
on these parameters, since the DWBA .S matrices S7
themselves depend in an involved way on Z and R,.
Qualitatively one expects, however, that the dispersion
effect becomes smaller when the target nucleus becomes
heavier, because the minima of the cross sections are
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F16. 6. Dispersion effect in elastic scattering for two nuclear
models. Full line: Fermi-type charge distribution with ¢=¢y=
4.28 fm, t=*4,=2.49 fm. Broken line: equivalent uniform charge
distribution with Req=35.071 fm, Ry,=4.45 fm.

more pronounced in light target nuclei® This is con-
firmed by a calculation of the dispersion effects for
20Ca%, N and 5Cd™ at E=250 MeV, where a 2+
state with B8,=0.3 is taken into account as the inter-
mediate state (Fig. 5). For a more extreme example, we
also calculated the dispersion effect for the scattering
of 200-MeV electrons by unpolarized gEr'®, where the
2+ state of the rotational band is taken as the inter-
mediate state with 8;=0.3. In this case the dispersion
effect never exceeds 19%.

To test the model dependence of the dispersion effect,
we made two calculations for the scattering of 250-
MeV electrons by Ni%, taking both times a 2% vibra-
tional state with B:=0.3 as the intermediate state.
First we calculated the dispersion effect, using (as
before) a Fermi-type static charge distribution with
c=428fm and ¢t=2.49fm, and the corresponding
transition charge potential (61); then we calculated
the same quantity using the equivalent uniform static
charge distribution with Req=>5.071 fm and a é-function
transition density at Ry,=5.545 fm. Figure 6 shows that
the value of the dispersion effect does not much depend
on the nuclear model; the position of its maxima is,
however, model-dependent: Since we defined the
dispersion effect as a relative effect, its maxima occur
at those scattering angles where the first-order form
factors, which is of course model-dependent, has
minima.

Up to this point we have considered primarily those
properties of the dispersion effect which depend on the
nature of the target. We will now turn to the influence
of the kinematics of the scattering process on the
dispersion effect.

B. Dependence on Momentum Transfer ¢ and Incident
Electron Energy £

Employing the same nuclear model as in Fig. 3, we
calculated the dispersion effect for various energies of
the electron and plotted it in Fig. 7 as a function of
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both 100< E<250 MeV and the momentum transfer gq.
The dispersion effect has its maxima where the form
factors themselves have their minima. For fixed g the
height of these maxima depends very little on E. A
large electron energy is needed, however, to reach high
momentum transfer ¢ where the effect becomes large.
The parameters ¢ and ¢ of the Fermi-type charge
distribution (50) were found for a number of spherical
nuclei with Z> 20 by fitting to electron scattering exper-
ments with energies up to about 250 MeV and scatter-
ing angles up to 120°?2 i.e., in regions of momentum
transfer where the dispersion effects are still small
enough to be neglected (<59%). Recent experiments at
higher energies could not, however, be fitted by a
first-order calculation with these parameters at back-
ward angles with a momentum transfer ¢>1 GeV/c.
Since our results indicate that the dispersion effects
become important for large momentum transfers, they
should therefore be included, as well as the finer details
of the electrostatic charge distribution, in the analysis
of high-energy electron scattering data. This would not
affect those conclusions, such as the nuclear radii and
surface thicknesses, which are drawn from the forward
part of the diffraction pattern, where the momentum
transfer and thus the dispersion effects are small.

VI. DISPERSION EFFECT IN
INELASTIC SCATTERING

Since we always calculate the entire S matrix we get
the inelastic cross sections for the excitation of all

IF - IFZ ”
Fz "

1307y —————

12175~

1124 > = 7
]0,0‘) RS S T B S

z=28
B,= 03

500

MeV,
q (=)

E(MeV)

Fic. 7. Dispersion effect in elastic scattering as a function of
the incident electron energy E and the momentum transfer g.
The nuclear model is described in Fig. 3.

g

e e - S
© J, B. Bellicard et al., Phys. Rev. Letters 19, 527 (1967).
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Fi1c. 8. Form factors and the dispersion effect for the excitation
of the | 3, 1= )= (—4dT+3V3[dtxBT]171) | 0) state in Ni®%. In the
spectrum, the full arrow indicates the first-order transition, and
the broken arrows show the major virtual transitions.
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F1G. 9. Same as Fig. 8, except for the giant-resonance wave func-
tions | 2, 1=)y=d' | 0), | 3, 17 )Y=[dTxgT 71| 0).
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F1c. 10. Same as Fig. 9 for various incident electron energies E
as a function of E and the momentum transfer ¢.

nuclear states, which were taken into account as inter-
mediate states together with the elastic cross section.
In Fig. 8 we show as an example the form factors and
the dispersion effect for the excitation of the upper
giant-resonance state (68):

| o, J)=| 3, 17)= (—3d™+3B[d"X 1Y) | 0).

Since we defined the dispersion effect as a relative
effect, (| F |p*— | F |8*)/| F |p% we can increase it by
making the first-order effect smaller. If, for example,
we choose the admixture coefficients in the wave func-
tions of the giant-resonance states in such a manner
that the dipole and the quadrupole modes are decoupled:

| o, J)=| 3, 17)=[d"™XBT]""1] 0), (17)

then the | 3, 1) state can even in first order only be
reached from the ground state by the excitation of both
a dipole and a quadrupole phonon. The form factor
| F |p? therefore becomes smaller than in the (realistic)
coupled case, and the dispersion effect becomes larger
(Fig. 9). These calculations were repeated for several
energies E (Fig. 10).

(76)

TaBLE II. Same as in Table I for the excitation
of the | 3, 1) state.

1,2%)

Intermediate states | 1,2%) |2,17) 2,17)
(deg) (%) (%) (%)

0=>52 6.3 3.5 10.8

=90 —0.8 —1.1 —-1.9

0=145 —8.0 -5.3 —13.0
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As in elastic scattering, we find by neglecting the
| 1, 2t) intermediate state or the | 2, 1=) intermediate
state that the matrix elements of AST are a sum of the
contributions from the various possible intermediate
states. These contributions then add up also for the
total value of the dispersion effect (Table II), but in
different ways at different angles because of the co-
herent partial-wave sum in (75).

Before investigating the dependence of the dispersion
effect in inelastic scattering on the transition strengths
of the virtual excitations, we will consider a type of
higher-order effect other than the dispersion effect.
The latter comes from a virtual excitation to an inter-
mediate state | @, J%), which differs in its quantum
number « from both the initial and final states. In
contrast to the dispersion effect, the so-called reorienta-
tion effect comes from virtual transitions between the
various magnetic substates of a particular nuclear state.
It is well known and experimentally studied in Coulomb
excitation. We can investigate the corresponding
effect in electron scattering by assuming an anharmonic-
vibrator model for the nucleus.

VII. REORIENTATION EFFECT

In the vibrator model of a spherical nucleus we
consider the following excited states (Fig. 11) a singlet
state,

|1, 24)= (p8'+qu/V2[BTXB1 I 0),  (78)

and the triplet
12, 20)= (pBT+qo/V2[BIXBTIE ) 0), (79)
[3,00)=1/V2[B1XET]0" | 0), (80)
| 4, 4+)=1/N2[B X1 | 0). (81)

The mixing of the one-phonon 2+ and the two-phonon 2+
states describes an anharmonicity in the nuclear
quadrupole vibrations, which leads to static quadrupole
moments in the 2+ states:

1 1/2
eQ= <_§E> <a, 2+

Inserting (56), one gets, after some calculations,

2 dpy
th()(ss) ZNop “‘1“/ ey

/dT pN(r)1’2Y2yo

a, 2+> . (82)

o (83)

F4ZN2(2p2—%qa) /dr 75

‘], de Boer and J. Eichler, in Advances in Nuclear Plysics
(Plenum Press, Inc., New York, 1968), Vol. 1. This review article
contains more references.
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and the reduced transition probabilities become
B(E2,10,0M)— | a, 2))

2
= <a, 2+ /dr r2on (1) Vs 0>
d,
=35 [~Z6A72pa/dr ro 2
dr
5 1/2 dZPO 2
— ZeN#ga (> / P IR (84
eNy2g <7_n_) dr dﬂ] (84)

We consider the excitation of the | 1,2t) state. The
direct-transition potential is obtained from (46), (56),
and (78) and is given, up to two-phonon terms, by

a 2
Tz ®=28W/5) [ dre’
X

0

dpy ( 5 )1/‘2 /Zzpo]
—Nypr 2N () 2SR (8s
X[ Nopwr g =Neu g ) e ] )

It is consistent to consider only one-phonon terms in the
transition potentials of the virtual transitions because
they enter at least quadratically into the S matrix. In
order to get the form factor | F |#2 for the excitation of

1 N\

0t

12,2%
1,2% o
oom T~

E = 200MeV

0% Z= 28
B(E2)=1872 e? fm*

0 L - 1. 1 e I )
20 40 60 80 100 120 140 160
— (")

F16. 11. Total higher-order effect in Ni® for the excitation of
the | 1, 2*) state with wave functions | 1, 2+)= (3v38T+1[8" X
a1E*) [0) and |2, 2t)=(—38"+4v3[8TXE1]E) |0). The
unbroken line represents the first-order transition, the broken
line (] 0, 07 )—] 2, 2+)—]| 1, 2+)) represents the dispersion effect,
and the broken line (] 0, 0*)—| 1, 2*)—| 1, 2*)) represents the
reorientation effect.
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the | 1, 2+) state exactly up to terms of order 82, we
can then drop the 0% and the 4+ state of the triplet and
also all transition potentials with N#2, and we are left
with

2 d
Toataar @=Ze(\/5) / ar = — ()N P (86)
7> dr
a 2
Tintongr@=Ze(v/10) f drr’s
0 r>

d
quipo) Nor 22 (87)

X (—p1ge— o

doo
Tistas®=Ze2(\/10) / dr v A—( [)1(11)]\727—[—
S

0

(88)

The latter describes a transition within the magnetic
substates of the |1,2t) state. Because transitions
between states with different magnetic quantum
numbers are possible, such a transition is called a
reorientation. Figure 11 shows the result of our cal-
culation for Z=28. The total higher-order effect is a
sum of the dispersion effect, i.e., the two-step excitation
| 0,0%Y—| 2, 2+)—| 1, 2t+), and the reorientation effect
]0,0t)— | 1,2+)—| 1, 2+). Table III shows that the
dispersion effect and the reorientation effect are of
opposite sign. This was also found in the Coulomb
excitation of Er'% % where the 2t state of the rotation
band takes the role of our | 1, 2*) state and the ground
state of the.y band takes the role of our | 2, 2*) state.

For the dependence of the effect on the effective
deformation @s, we note that if 8,<<1, then §7 is propor-
tional to By [Eq. (27)] and AST to 822 [Eq. (75)],
because the one-phonon term gives the major contribu-
tion to Jyo+o1,0+@. Therefore, both the dispersion effect
and the reorientation effect are proportional to S
(Fig. 12).

Furthermore, we repeated the calculation, which led
to Fig. 11, for 4sCd™. Although B(E2,]| 0, 0t)— | 1, 2t))

TABLE III. Total higher-order effect in the excitation of the
| 1, 2+) state in Ni%® at £=200 MeV near the minima of | F |p2.
The second column gives the dispersion effect, and the third
gives the reorientation effect. In the fourth column, both virtual
excitation modes were considered to give the total effect. The
wave functions are |1,2%) —(IV—BT+1[/3TXBT:|[2+1) |0) and
|2,2%)y=(—3BT+}V3[ATXATt)) | 0).

[2,2%)

Intermediate states | 2,2%) [ 1,2%) 1 1,2%)
(deg) (%) (%) (%)

=175 —1.4 3.4 1.9
=150 +2.7 —10.0 —7.4

42 B. Greiner and H. Arenhével, Nucl. Phys. A107, 225 (1968) ;
A. C. Douglas and N. MacDonald, Phys. Letters 24B, 447 (1967).
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F1c. 12. Same as in Fig. 11 for various B.

is larger than in the previous case, we find the total
higher-order effect much smaller (Iig. 13). The reason
for this is again that for large Z the form factor | F |2
becomes a smoother function of the scattering angle 6.

VIII. NUMERICAL TESTS OF PROGRAM AND
COMPARISON WITH OTHER
CALCULATIONS

The numerical exactness of the underlying DWBA
program is obviously essential for our EKT calculation.
This program has been used and tested in various
calculations.?? We can reproduce the elastic Born-
approximation form factor for E=250 MeV up to
6=150° (which is farther backwards than the last
minimum at §=135° in Fig. 3) with an error smaller
than 109, by setting Z=0.1 when calculating the wave
function of the electron. It is important to find a good
value for the radius R, at which the numerically
integrated wave functions are fitted to the point
Coulomb wave functions for the evaluation of the
potential scattering phase. Because of the tail of the
electrostatic Fermi-type charge distribution, this
radius must not be chosen too small; on the other hand,
it is difficult to calculate the point Coulomb functions
accurately if R, is too large. We found that at E=250
MeV, R,;=8.25fm gives optimal results for Ni%.
When we intentionally changed this value to Ru..=
10.25 fm, we found that the form factor | F |p? itself was
changed by 219, at §=135° (Fig. 3), while the dispersion
effect (| F |p?*— | F |g?)/| F |p* was changed from the
value 11.49, of Fig. 3 to 179%,. It seems, therefore, that
the dispersion effect, though it is a difference effect, can
be calculated fairly accurately with our program even at
backward-scattering angles.

To have an independent check on the validity of the
EKT approach, we compared our calculations with
Rawitscher’s coupled-channel results” A virtual
monopole excitation is considered, with a transition
charge density

pur= (0, 0% | py | 1, 0*)=N (B+a%¢),

x=r/z

(89)
where
(90)
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I'16. 13. Same as in Fig. 11 for Cd!4, where with our wave
functions the quadrupole moment in the | 1, 2*) state becomes
Q=-—1355.3 fm2.

(2 being a parameter) and B is determined in terms of a
cutoff radius R from the condition ‘

R
f pue (F)12 dr=0. (91)
0

The normalization constant is adjusted in such a manner
that the total inelastic cross section has a certain value.
Figure 14 shows Rawitscher’s coupled-channel results
and the EKT results for the scattering of 250-MeV
electrons by Ca®. As usual, we have the maxima of the
absolute value of the dispersion effect there and only
there, where the elastic form factor itself has minima.
At these extrema there is an excellent agreement be-
tween both calculations. We cannot, however, reproduce
the two smaller extrema which occur in the coupled
channel result.

No direct comparison is possible between our results
and those of the second-order DWBA calculation of
Onley,® because closure is used for the intermediate
states in the latter. But as far as the sign and the order
of magnitude are concerned, there is good qualitative
agreement between Fig. 3 and Onley’s corresponding
result.

IX. CONCLUSIONS

We have shown that it is quite simple to calculate
higher-order effects in electron scattering by using the
eigenchannel theory, because any DWBA program has
only to be extended by a diagonalization procedure to
give the higher-order cross sections. Since the coupling
between the various channels is small, one can calculate

C. TOEPFFER AND W. GREINER

186

the matrix S, which includes the higher-order effects,
with one iteration out of the first-order matrix .S. One
needs, therefore, only slightly more time to compute the
cross sections for electron-nucleus scattering including
higher-order effects due to virtual transitions between
the various channels than to compute the cross section
for the scattering into these channels in first-order
perturbation theory.

In elastic scattering we get effects of the order of 129,
at E=250 MeV and backward angles. This value is, of
course, too small to be detected experimentally. It
seems, however, that the dispersion effect is at least
partially responsible for the disagreement between the
low-energy fits of the parameters of the electrostatic
nuclear charge distributions and recent high-energy
experiments.® Figure 7 suggests strongly that the dis-
persion effect becomes larger with larger momentum
transfer ¢. It is therefore desirable to extend the cal-
culations to higher energies. Such work is in progress.

Also, our results for inelastic scattering indicate that
it will be difficult to measure higher-order effects, since
these effects show up in the minima of the inelastic
cross sections, while the most accurate experimental
work is done for low-momentum transfer ¢ in the as-
cending part of the inelastic form factor.®4 The best
chance to detect higher-order effects in inelastic scatter-
ing is, of course, given when the first-order transition
is strongly hindered, as in Fig. 9, or even forbidden as
for the excitation of a 0~ state from 0t ground state. In
the latter case one of the virtual transitions has to be of
magnetic type. Therefore the transverse parts of the
electromagnetic interaction have to be included in such
a calculation. Moreover, the retardation and the energy
loss of the electron should be taken into account to get
exact results at backward angles. Existing DWBA
programs® in which these effects are taken care of can
be used as a basis for an EKT calculation.

25

-5

Fic. 14. Comparison of Rawitscher’s coupled-channel result
(broken line) with the corresponding EKT result (unbroken
line) for the dispersion effect in the elastic scattering of 250-MeV
electrons by Ca® with a virtual monopole excitation.
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Besides the retardation, the only other approximation
in this work is the neglect of the interior basis state with
a radial quantum number #5%0. We showed, however,
in Sec. IT that these neglected states couple about 20
times more weakly to the first-order transition than the
weakest-coupling channels that were taken into account.

Another open question is, of course, whether our
nuclear model, which is, of course, very schematic, gives
an appropriate representation of the possible virtual
states. We take only a few discrete states of the whole
spectrum of electron-nucleus scattering into account,
namely, those such that the energy loss of the electron
is £<20 MeV. This is justified as long as one is in-
terested in order-of-magnitude results and deals with
moderate incident electron energies. If, however, the
incident energy of the electron becomes large, then
virtual excitations into the quasi-elastic peak, or even
virtual meson production, could play a role in the dis-
persion effect, inasmuch as we found that the dispersion
effect depends on the energy loss of the electron in a
virtual excitation only through the interaction matrix
elements (Sec. IIT). Moreover, these states form a
continuum (as does the giant resonance in a more
realistic model). The nuclear continuum problems
which arise in electron scattering have recently beer
treated by applying the EKT to a nuclear shell-model
Hamiltonian, while the electron was treated in Born
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approximation.® To include higher-order effects one has
to apply the EKT to both the electron and the escape
nucleon. Such a two-particle EKT has also been
formulated.?

An actual calculation of this type will, however, be
very involved. It therefore seems advantageous to
consider the closed forms (42) (in which no explicit
reference is made to the intermediate states) or (41)
(which can be evaluated by the use of sum rules) for
further applications of the eigenchannel theory to
electron scattering.
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The vector analyzing power D.(9) and the tensor analyzing powers Ds3(6) and [Dy(6) —De2(8)] of the
H2(d, p) H? reaction have been measured at a mean deuteron energy of 140 keV using a beam of polarized
deuterons from the Yale polarized-ion source and a 100-keV-thick target of unpolarized deuterated poly-
ethylene. The results for the vector analyzing power are in agreement with previous measurements by
Ad’yasevich et al. at 100 and 200 keV and are consistent with a theoretical treatment by Rook and Goldfarb.
In the notation of this treatment, the results are B;/By=0.32124-0.059 and B;/By= —0.0362:0.042. The
results for the tensor analyzing powers are in reasonable agreement with a previous measurement
by Ad’yasevich et al. at 165 keV and are not consistent with the Rook-Goldfarb treatment in that a small
contribution from quintet-state reaction matrix elements is apparent. The experimental results for the
tensor analyzing powers are given by Bj;/Bo=—0.05940.015, Bs'/Bo=—0.5560.102, and B;/B,
= —0.413+0.152. The quintet-state contributions, in the notation introduced in this paper, are measured to
be Bs/Bo=—0.148:-0.084 and By;/Bo=0.002-:0.009. A calculation is made in which the assumptions of the
Rook-Goldfarb treatment are relaxed in order to allow nonvanishing s-wave quintet-state reaction matrix
elements. Explicit expressions for the various contributions of these reaction matrix elements to the differen-
tial cross section are presented.

I. INTRODUCTION

INCE its discovery by Lawrence, Livingston, and
Lewis! in 1933, the H2(d, ) H? reaction has been
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1 E. O. Lawrence, M. S. Livingston, and G. N. Lewis, Phys.
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the subject of a great number of investigations, both
theoretical and experimental. The main point of interest
for the earliest work was the 1936 discovery? that the
angular distribution of the outgoing protons was
anisotropic in the c.m. system even at energies as low as
100 keV. This fact indicated that p-wave contributions
to the reaction were important at these low energies.

2 A. E. Kempton, B. C. Browne, and R. Maasdorp, Proc.
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