259 research outputs found
IoT-based air quality monitoring systems for smart cities: A systematic mapping study
The increased level of air pollution in big cities has become a major concern for several organizations and authorities because of the risk it represents to human health. In this context, the technology has become a very useful tool in the contamination monitoring and the possible mitigation of its impact. Particularly, there are different proposals using the internet of things (IoT) paradigm that use interconnected sensors in order to measure different pollutants. In this paper, we develop a systematic mapping study defined by a five-step methodology to identify and analyze the research status in terms of IoT-based air pollution monitoring systems for smart cities. The study includes 55 proposals, some of which have been implemented in a real environment. We analyze and compare these proposals in terms of different parameters defined in the mapping and highlight some challenges for air quality monitoring systems implementation into the smart city context
Left-ventricular epi- and endocardium extraction from 3D ultrasound images using an automatically constructed 3D ASM
© 2014 Taylor & Francis.In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach
Temporal diffeomorphic Free Form Deformation (TDFFD) applied to motion and deformation quantification of tagged MRI sequences
International audienceThis paper presents strain quantification results obtained from the Tagged Magnetic Resonance Imaging (TMRI) sequences acquired for the 1 st cardiac Motion Analysis Challenge (cMAC). We applied the Temporal Diffeomorphic Free Form Deformation (TDFFD) algorithm to the phantom and the 15 healthy volunteers of the cMAC database. The TDFFD was modified in two ways. First, we modified the similarity metric to incorporate frame to frame intensity differences. Second, on volunteer sequences, we performed the tracking backward in time since the first frames did not show the contrast between blood and myocardium, making these frames poor choices of reference. On the phantom, we propagated a grid adjusted to tag lines to all frames for visually assessing the influence of the different algorithmic parameters. The weight between the two metric terms appeared to be a critical parameter for making a compromise between good tag tracking while preventing drifts and avoiding tag jumps. For each volunteer, a volumet-ric mesh was defined in the Steady-State Free Precession (SSFP) image, at the closest cardiac time from the last frame of the tagging sequence. Uniform strain patterns were observed over all myocardial segments, as physiologically expected
SPM to the heart: mapping of 4D continuous velocities for motion abnormality quantification
International audienceThis paper proposes to apply parallel transport and statistical atlas techniques to quantify 4D myocardial motion abnormalities. We take advantage of our previous work on cardiac motion , which provided a continuous spatiotemporal representation of velocities, to interpolate and reorient cardiac motion fields to an unbiased reference space. Abnormal motion is quantified using SPM analysis on the velocity fields, which includes a correction based on random field theory to compensate for the spatial smoothness of the velocity fields. This paper first introduces the imaging pipeline for constructing a continuous 4D velocity atlas. This atlas is then applied to quantify abnormal motion patterns in heart failure patients
Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation
This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.JCM: Higher Education Funding Council for England and the UK National
Institute for Health Research, University College London, Biomedical Research
Centre; GC: NIHR BRC University College London. DAB: Intramural research
program, National Institutes of Health
Incompressible image registration using divergence-conforming B-splines
Anatomically plausible image registration often requires volumetric
preservation. Previous approaches to incompressible image registration have
exploited relaxed constraints, ad hoc optimisation methods or practically
intractable computational schemes. Divergence-free velocity fields have been
used to achieve incompressibility in the continuous domain, although, after
discretisation, no guarantees have been provided. In this paper, we introduce
stationary velocity fields (SVFs) parameterised by divergence-conforming
B-splines in the context of image registration. We demonstrate that sparse
linear constraints on the parameters of such divergence-conforming B-Splines
SVFs lead to being exactly divergence-free at any point of the continuous
spatial domain. In contrast to previous approaches, our framework can easily
take advantage of modern solvers for constrained optimisation, symmetric
registration approaches, arbitrary image similarity and additional
regularisation terms. We study the numerical incompressibility error for the
transformation in the case of an Euler integration, which gives theoretical
insights on the improved accuracy error over previous methods. We evaluate the
proposed framework using synthetically deformed multimodal brain images, and
the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate
that our method compares favourably with state-of-the-art methods whilst
achieving volume preservation.Comment: Accepted at MICCAI 201
Cardiac injuries in blunt chest trauma
Blunt chest traumas are a clinical challenge, both for diagnosis and treatment. The use of cardiovascular magnetic resonance can play a major role in this setting. We present two cases: a 12-year-old boy and 45-year-old man. Late gadolinium enhancement imaging enabled visualization of myocardial damage resulting from the trauma
Automated segmentation of the atrial region and fossa ovalis towards computer-aided planning of inter-atrial wall interventions
Image-fusion strategies have been applied to improve inter-atrial septal (IAS) wall minimally-invasive interventions. Hereto, several landmarks are initially identified on richly-detailed datasets throughout the planning stage and then combined with intra-operative images, enhancing the relevant structures and easing the procedure. Nevertheless, such planning is still performed manually, which is time-consuming and not necessarily reproducible, hampering its regular application. In this article, we present a novel automatic strategy to segment the atrial region (left/right atrium and aortic tract) and the fossa ovalis (FO).Fundacão para a Ciência e a Tecnologia (FCT), in Portugal, and the European Social Found, European Union, for funding support through the “Programa Operacional Capital Humano” (POCH) in the scope of the PhD grants SFRH/BD/95438/2013 (P. Morais) and SFRH/BD/93443/2013 (S. Queirós).
This work was funded by projects NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000022 and NORTE-01-0145-FEDER-024300, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and also been funded by FEDER funds, through Competitiveness Factors Operational Programme (COMPETE), and by national funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio
Fast left ventricle tracking using localized anatomical affine optical flow
Fast left ventricle tracking using localized anatomical affine optical flowIn daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection, and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy were investigated in 3 distinct public databases, namely in realistically simulated 3D ultrasound, clinical 3D echocardiography, and clinical cine cardiac magnetic resonance images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D ultrasound and cardiac magnetic resonance data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations.The authors acknowledge funding support from FCT - Fundacao para a Ciência e a Tecnologia, Portugal, and
the European Social Found, European Union, through the Programa Operacional Capital Humano (POCH) in
the scope of the PhD grants SFRH/BD/93443/2013 (S. Queiros) and SFRH/BD/95438/2013 (P. Morais), and
by the project ’PersonalizedNOS (01-0145-FEDER-000013)’ co-funded by Programa Operacional Regional
do Norte (Norte2020) through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio
Fully-Coupled Electromechanical Simulations of the LV Dog Anatomy Using HPC: Model Testing and Verification
Verification of electro-mechanic models of the heart require a good amount of reliable, high resolution, thorough in-vivo measurements. The detail of the mathematical models used to create simulations of the heart beat vary greatly. Generally, the objective of the simulation determines the modeling approach. However, it is important to exactly quantify the amount of error between the various approaches that can be used to simulate a heart beat by comparing them to ground truth data. The more detailed the model is, the more computing power it requires, we therefore employ a high-performance computing solver throughout this study. We aim to compare models to data measured experimentally to identify the effect of using a mathematical model of fibre orientation versus the measured fibre orientations using DT-MRI. We also use simultaneous endocardial stimuli vs an instantaneous myocardial stimulation to trigger the mechanic contraction. Our results show that synchronisation of the electrical and mechanical events in the heart beat are necessary to create a physiological timing of hemodynamic events. Synchronous activation of all of the myocardium provides an unrealistic timing of hemodynamic events in the cardiac cycle. Results also show the need of establishing a protocol to quantify the zero-pressure configuration of the left ventricular geometry to initiate the simulation protocol; however, the predicted zero-pressure configuration of the same geometry was different, depending on the origin of the fibre field employed.This work has been done with the support of the grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Government to the Barcelona Supercomputing Center. Part of the research leading to these results has received funding from the Seventh Framework Programme (FP7/2007-2013) under grant agreement n 611823. It has also been partially funded from the by the Spanish
Ministry of Economy and Competitiveness (TIN2011-28067).Peer ReviewedPostprint (author's final draft
- …