177 research outputs found

    5-Eth­oxy-1,3,4-thia­diazole-2(3H)-thione

    Get PDF
    In the title compound, C4H6N2OS2, the dihedral angle between the five-membered heterocyclic ring and the plane of the eth­oxy group is 4.9 (2)°. The 1,3,4-thiadiazole-2-thione unit is planar, with an r.m.s. deviation of 0.011 Å from the corresponding squares plane defined by the seven constituent atoms. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into inversion dimers

    Probing the QCD Critical Point with Relativistic Heavy-Ion Collisions

    Full text link
    We utilize an event-by-event relativistic hydrodynamic calculation performed at a number of different incident beam energies to investigate the creation of hot and dense QCD matter near the critical point. Using state-of-the-art analysis and visualization tools we demonstrate that each collision event probes QCD matter characterized by a wide range of temperatures and baryo-chemical potentials, making a dynamical response of the system to the vicinity of the critical point very difficult to isolate above the background.Comment: CPOD 2011 Proceeding

    spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

    Get PDF
    The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package. (C) 2016 Elsevier Ltd. All rights reserved

    Automated segmentation of the atrial region and fossa ovalis towards computer-aided planning of inter-atrial wall interventions

    Get PDF
    Image-fusion strategies have been applied to improve inter-atrial septal (IAS) wall minimally-invasive interventions. Hereto, several landmarks are initially identified on richly-detailed datasets throughout the planning stage and then combined with intra-operative images, enhancing the relevant structures and easing the procedure. Nevertheless, such planning is still performed manually, which is time-consuming and not necessarily reproducible, hampering its regular application. In this article, we present a novel automatic strategy to segment the atrial region (left/right atrium and aortic tract) and the fossa ovalis (FO).Fundacão para a Ciência e a Tecnologia (FCT), in Portugal, and the European Social Found, European Union, for funding support through the “Programa Operacional Capital Humano” (POCH) in the scope of the PhD grants SFRH/BD/95438/2013 (P. Morais) and SFRH/BD/93443/2013 (S. Queirós). This work was funded by projects NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000022 and NORTE-01-0145-FEDER-024300, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and also been funded by FEDER funds, through Competitiveness Factors Operational Programme (COMPETE), and by national funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio

    A competitive strategy for atrial and aortic tract segmentation based on deformable models

    Get PDF
    Multiple strategies have previously been described for atrial region (i.e. atrial bodies and aortic tract) segmentation. Although these techniques have proven their accuracy, inadequate results in the mid atrial walls are common, restricting their application for specific cardiac interventions. In this work, we introduce a novel competitive strategy to perform atrial region segmentation with correct delineation of the thin mid walls, and integrated it into the B-spline Explicit Active Surfaces framework. A double stage segmentation process is used, which starts with a fast contour growing followed by a refinement stage with local descriptors. Independent functions are used to define each region, being afterward combined to compete for the optimal boundary. The competition locally constrains the surface evolution, prevents overlaps and allows refinement to the walls. Three different scenarios were used to demonstrate the advantages of the proposed approach, through the evaluation of its segmentation accuracy, and its performance for heterogeneous mid walls. Both computed tomography and magnetic resonance imaging datasets were used, presenting results similar to the state-of-the-art methods for both atria and aorta. The competitive strategy showed its superior performance with statistically significant differences against the traditional free-evolution approach in cases with bad image quality or missed atrial/aortic walls. Moreover, only the competitive approach was able to accurately segment the atrial/aortic wall. Overall, the proposed strategy showed to be suitable for atrial region segmentation with a correct segmentation of the mid thin walls, demonstrating its added value with respect to the traditional techniques.The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT), in Portugal, and the European Social Found, European Union, for funding support through the "Programa Operacional Capital Humano" (POCH) in the scope of the PhD grants SFRH/BD/95438/2013 (P. Morais) and SFRH/BD/93443/2013 (S. Queiros).Authors gratefully acknowledge the funding of projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000022, co-financed by "Programa Operacional Regional do Norte" (NORTE2020), through "Fundo Europeu de Desenvolvimento Regional" (FEDER).info:eu-repo/semantics/publishedVersio

    On the Use of Accelerated Molecular Dynamics to Enhance Configurational Sampling in Ab Initio Simulations

    Get PDF
    We have implemented the accelerated molecular dynamics approach (Hamelberg, D.; Mongan, J.; McCammon, J. A. J. Chem. Phys. 2004, 120 (24), 11919) in the framework of ab initio MD (AIMD). Using three simple examples, we demonstrate that accelerated AIMD (A-AIMD) can be used to accelerate solvent relaxation in AIMD simulations and facilitate the detection of reaction coordinates: (i) We show, for one cyclohexane molecule in the gas phase, that the method can be used to accelerate the rate of the chair-to-chair interconversion by a factor of ∼1 × 105, while allowing for the reconstruction of the correct canonical distribution of low-energy states; (ii) We then show, for a water box of 64 H2O molecules, that A-AIMD can also be used in the condensed phase to accelerate the sampling of water conformations, without affecting the structural properties of the solvent; and (iii) The method is then used to compute the potential of mean force (PMF) for the dissociation of Na−Cl in water, accelerating the convergence by a factor of ∼3−4 compared to conventional AIMD simulations.(2) These results suggest that A-AIMD is a useful addition to existing methods for enhanced conformational and phase-space sampling in solution. While the method does not make the use of collective variables superfluous, it also does not require the user to define a set of collective variables that can capture all the low-energy minima on the potential energy surface. This property may prove very useful when dealing with highly complex multidimensional systems that require a quantum mechanical treatment

    Polyyne Hybrid Compounds from Notopterygium incisum with Peroxisome Proliferator-Activated Receptor Gamma Agonistic Effects

    Get PDF
    [Image: see text] In the search for peroxisome proliferator-activated receptor gamma (PPARγ) active constituents from the roots and rhizomes of Notopterygium incisum, 11 new polyacetylene derivatives (1–11) were isolated. Their structures were elucidated by NMR and HRESIMS as new polyyne hybrid molecules of falcarindiol with sesquiterpenoid or phenylpropanoid moieties, named notoethers A–H (1–8) and notoincisols A–C (9–11), respectively. Notoincisol B (10) and notoincisol C (11) represent two new carbon skeletons. When tested for PPARγ activation in a luciferase reporter assay with HEK-293 cells, notoethers A–C (1–3), notoincisol A (9), and notoincisol B (10) showed promising agonistic activity (EC(50) values of 1.7 to 2.3 μM). In addition, notoincisol A (9) exhibited inhibitory activity on NO production of stimulated RAW 264.7 macrophages
    corecore