2,362 research outputs found

    The size and polydispersity of silica nanoparticles under simulated hot spring conditions

    Get PDF
    The nucleation and growth of silica nanoparticles in supersaturated geothermal waters was simulated using a flow-through geothermal simulator system. The effect of silica concentration ([SiO2]), ionic strength (IS), temperature (T) and organic additives on the size and polydispersity of the forming silica nanoparticles was quantified. A decrease in temperature (58 to 33°C) and the addition of glucose restricted particle growth to sizes <20 nm, while varying [SiO2] or ISdid not affect the size (30-35 nm) and polydispersity (±9 nm) observed at 58°C. Conversely, the addition of xanthan gum induced the development of thin films that enhanced silica aggregation

    The metagenomics of biosilicification: causes and effects

    Get PDF
    In order to determine the links between geochemical parameters controlling the formation of silica sinter in hot springs and their associated microbial diversity, a detailed characterisation of the waters and of in situ-grown silica sinters was combined with molecular phylogenetic analyses of the bacterial communities in Icelandic geothermal environments. At all but one site, the microorganisms clearly affected, and in part controlled, the formation of the macroscopic textures and structures of silica sinter edifices. In addition, the class and genera level phylogenetic diversity and distribution appeared to be closely linked to variations in temperature, salinity and pH regimes

    Diffusion-based method for producing density equalizing maps

    Full text link
    Map makers have long searched for a way to construct cartograms -- maps in which the sizes of geographic regions such as countries or provinces appear in proportion to their population or some other analogous property. Such maps are invaluable for the representation of census results, election returns, disease incidence, and many other kinds of human data. Unfortunately, in order to scale regions and still have them fit together, one is normally forced to distort the regions' shapes, potentially resulting in maps that are difficult to read. Many methods for making cartograms have been proposed, some of them extremely complex, but all suffer either from this lack of readability or from other pathologies, like overlapping regions or strong dependence on the choice of coordinate axes. Here we present a new technique based on ideas borrowed from elementary physics that suffers none of these drawbacks. Our method is conceptually simple and produces useful, elegant, and easily readable maps. We illustrate the method with applications to the results of the 2000 US presidential election, lung cancer cases in the State of New York, and the geographical distribution of stories appearing in the news.Comment: 12 pages, 3 figure

    Neuronal Distortions of Reward Probability without Choice

    Get PDF
    Reward probability crucially determines the value of outcomes. A basic phenomenon, defying explanation by traditional decision theories, is that people often overweigh small and underweigh large probabilities in choices under uncertainty. However, the neuronal basis of such reward probability distortions and their position in the decision process are largely unknown. We assessed individual probability distortions with behavioral pleasantness ratings and brain imaging in the absence of choice. Dorsolateral frontal cortex regions showed experience dependent overweighting of small, and underweighting of large, probabilities whereas ventral frontal regions showed the opposite pattern. These results demonstrate distorted neuronal coding of reward probabilities in the absence of choice, stress the importance of experience with probabilistic outcomes and contrast with linear probability coding in the striatum. Input of the distorted probability estimations to decision-making mechanisms are likely to contribute to well known inconsistencies in preferences formalized in theories of behavioral economics

    Coding of Reward Probability and Risk by Single Neurons in Animals

    Get PDF
    Probability and risk are important factors for value-based decision making and optimal foraging. In order to survive in an unpredictable world, organisms must be able to assess the probability and risk attached to future events and use this information to generate adaptive behavior. Recent studies in non-human primates and rats have shown that both probability and risk are processed in a distributed fashion throughout the brain at the level of single neurons. Reward probability has mainly been shown to be coded by phasic increases and decreases in firing rates in neurons in the basal ganglia, midbrain, parietal, and frontal cortex. Reward variance is represented in orbitofrontal and posterior cingulate cortex and through a sustained response of dopaminergic midbrain neurons

    Geobase Information System Impacts on Space Image Formats

    Get PDF
    As Geobase Information Systems increase in number, size and complexity, the format compatability of satellite remote sensing data becomes increasingly more important. Because of the vast and continually increasing quantity of data available from remote sensing systems the utility of these data is increasingly dependent on the degree to which their formats facilitate, or hinder, their incorporation into Geobase Information Systems. To merge satellite data into a geobase system requires that they both have a compatible geographic referencing system. Greater acceptance of satellite data by the user community will be facilitated if the data are in a form which most readily corresponds to existing geobase data structures. The conference addressed a number of specific topics and made recommendations

    Transport of <i>Sporosarcina pasteurii</i> in sandstone and its significance for subsurface engineering technologies

    Get PDF
    The development of microbially mediated technologies for subsurface remediation and rock engineering is steadily increasing; however, we are lacking experimental data and models to predict bacterial movement through rock matrices. Here, breakthrough curves (BTCs) were obtained to quantify the transport of the ureolytic bacterium, Sporosarcina pasteurii, through sandstone cores, as a function of core length (1.8–7.5 cm), bacterial density (4 × 10&lt;sup&gt;6&lt;/sup&gt; to 9 × 10&lt;sup&gt;7&lt;/sup&gt; cells/ml) and flow rate (5.8–17.5 m/s). &lt;i&gt;S. pasteurii&lt;/i&gt; was easily immobilised within the homogeneous sandstone matrix (&gt;80%) in comparison to a packed sand column (&lt;20%; under similar experimental conditions), and percentage recovery decreased almost linearly with increasing rock core length. Moreover, a decrease in bacterial density or flow rate enhanced bacterial retention. A numerical model based on 1D advection dispersion models used for unconsolidated sand was fitted to the BTC data obtained here for sandstone. Good agreement between data and model was obtained at shorter rock core lengths (&lt;4 cm), suggesting that physicochemical filtration processes are similar in homogeneous packed sand and sandstones at these lengths. Discrepancies were, however observed at longer core lengths and with varying flow rates, indicating that the attributes of consolidated rock might impact bacterial transport progressively more with increasing core length. Implications of these results on microbial mineralisation technologies currently being developed for sealing fluid paths in subsurface environment is discussed

    Effects of serum and serum heat-inactivation on human bone derived osteoblast progenitor cells

    Get PDF
    Generally, heat inactivated foetal calf serum (FCS) containing media are used for the cultivation of animal and human cells. The role of serum source and serum treatment on the behaviour of cells has long been neglected. The present study was performed to investigate the effects of serum heat inactivation and serum source on trabecular bone derived progenitor cells (HBC). Furthermore, it was investigated in how far these reactions differed from those seen in bone marrow derived mesenchymal progenitor cells (HBMC) cultures. We found that HBC cultures performed differently in the presence of FCS and HS with or without heat inactivation. The reactions similar to some degree those observed in HBMC cultures. The implications of the results on cell-implant surface interaction studies are discusse

    Quasi-infra-red fixed points and renormalisation group invariant trajectories for non-holomorphic soft supersymmetry breaking

    Get PDF
    In the MSSM the quasi-infra-red fixed point for the top-quark Yukawa coupling gives rise to specific predictions for the soft-breaking parameters. We discuss the extent to which these predictions are modified by the introduction of additional ``non-holomorphic'' soft-breaking terms. We also show that in a specific class of theories there exists an RG-invariant trajectory for the ``non-holomorphic'' terms, which can be understood using a holomorphic spurion term.Comment: 24 pages, TeX, two figures. Uses Harvmac (big) and epsf. Minor errors corrected, and the RG trajectory explained in terms of a holomorphic spurion ter
    corecore