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The development of microbially mediated technologies for subsurface remediation and rock engineering
is steadily increasing; however, we are lacking experimental data and models to predict bacterial move-
ment through rock matrices. Here, breakthrough curves (BTCs) were obtained to quantify the transport of
the ureolytic bacterium, Sporosarcina pasteurii, through sandstone cores, as a function of core length
(1.8-7.5 cm), bacterial density (4 x 10° to 9 x 107 cells/ml) and flow rate (5.8-17.5 m/s). S. pasteurii
was easily immobilised within the homogeneous sandstone matrix (>80%) in comparison to a packed
sand column (<20%; under similar experimental conditions), and percentage recovery decreased almost
linearly with increasing rock core length. Moreover, a decrease in bacterial density or flow rate enhanced
bacterial retention. A numerical model based on 1D advection dispersion models used for unconsolidated
sand was fitted to the BTC data obtained here for sandstone. Good agreement between data and model
was obtained at shorter rock core lengths (<4 cm), suggesting that physicochemical filtration processes
are similar in homogeneous packed sand and sandstones at these lengths. Discrepancies were, however
observed at longer core lengths and with varying flow rates, indicating that the attributes of consolidated
rock might impact bacterial transport progressively more with increasing core length. Implications of
these results on microbial mineralisation technologies currently being developed for sealing fluid paths

in subsurface environment is discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The transport of microorganisms through porous rock media is
a crucial factor for a variety of subsurface remediation and engi-
neering technologies including in situ bioremediation of contami-
nants (e.g., Li et al., 2011), microbially enhanced oil recovery
(Shabani et al., 2011) and microbially induced mineral precipita-
tion for pore space and fracture plugging to control fluid flow
(e.g., Cuthbert et al., 2013; Ferris et al., 1996; Phillips et al., 2013;
Tobler et al., 2012), soil stabilization (e.g., van Paassen et al.,
2010 and reference therein) and solid-phase capture of pollutants
(e.g., Fujita et al., 2010; Lauchnor et al., 2013; Mitchell and Ferris,
2005). Moreover, accurate prediction of bacterial transport is
valuable for risk assessment of pathogenic organisms (e.g., viruses,
protozoa, or bacteria) introduced to the subsurface environment by
infiltrating wastewaters (e.g., Pachepsky et al., 2006).

There is an extensive literature on the transport of bacteria in
saturated packed columns (e.g., Bradford et al., 2006; Ding, 2010;
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Liu et al., 2011; Olson et al., 2005; Stevik et al., 2004; Stumpp
et al.,, 2011; Torkzaban et al., 2008) where breakthrough curve
analysis and in some cases magnetic resonance imaging were used
to determine the impact of physical, chemical and biological
parameters on bacterial retardation, dispersion and diffusion under
both static and advective flow conditions. Transport of bacteria can
vary considerably between different bacterial strains even when
they exhibit similar cell morphologies and surface characteristics
(Liu et al., 2011; Stumpp et al., 2011). This suggests that transport
parameters cannot be generalised and need to be determined for
each organism individually. A disadvantage of packed column
experiments is that they lack the porosity, permeability, hydrody-
namics and heterogeneities of consolidated rock systems: factors
that have a marked impact on transport in the subsurface.

To date, there are very few studies that have investigated
bacterial transport in rock. These included laboratory studies in
fractured volcanic tuff and Berea sandstone (Jang et al., 1983; Story
et al, 1995), and field investigations in fractured crystalline
bedrock (Becker et al., 2003; Champ and Schroeter, 1988). Again,
variations in transport behaviour were observed for different bac-
terial species, with one study also reporting substantial blocking of
pore throats with an increase in injected bacterial density (Jang
et al., 1983). In these studies, no model fits for the experimental


http://crossmark.crossref.org/dialog/?doi=10.1016/j.apgeochem.2014.01.004&domain=pdf
http://dx.doi.org/10.1016/j.apgeochem.2014.01.004
mailto:dominique.tobler@nano.ku.dk
http://dx.doi.org/10.1016/j.apgeochem.2014.01.004
http://www.sciencedirect.com/science/journal/08832927
http://www.elsevier.com/locate/apgeochem

D.J. Tobler et al./Applied Geochemistry 42 (2014) 38-44 39

breakthrough curves were presented, and thus little information
on transport parameters was given. This knowledge however, is
important to develop realistic models to predict bacterial transport
through subsurface rock as needed for the various applications
listed above. Some information could certainly be transferred from
transport studies of viruses and colloids through rock, but these
investigations focussed mainly on fractured rock systems both at
field (e.g., McKay et al., 1997) and laboratory scale (e.g., Mondal
and Sleep, 2013; Ojha et al,, 2011). The hydraulic regime in frac-
tures is very different from that associated with matrix flow and
grain porosity. In fact, it is difficult to immobilise bacteria onto
fracture surfaces, as has been observed in field studies on microbial
mineralisation for fracture sealing (Cuthbert et al., 2013). This
complicates transfer of transport parameters from fractured to
porous systems.

The literature on bacterial transport through porous rock is thus
limited, particularly with regards to transport modelling. Here, we
determined breakthrough curves of Sporosarcina pasteurii in Bent-
heimer sandstone as a function of core length, bacterial density,
and flow rate. A bacterial transport model was developed to fit
the breakthrough curve data from S. pasteurii in Bentheimer sand-
stone and to infer the dominant transport processes.

We focussed on S. pasteurii as it is being extensively utilised in
the development of technologies for pore space and fracture plug-
ging to control fluid flow and prevent leaks in CO, storage reser-
voirs, nuclear waste repositories, or oil recovery sites. These
technologies utilise the bacteria’s ability to precipitate large quan-
tities of calcite via urea hydrolysis. Pore space plugging using this
process has been successful at various scales (e.g., Cuthbert et al.,
2013; Ferris et al., 1996; Phillips et al., 2013; Sham et al., 2013; To-
bler et al., 2012; van Paassen et al., 2010). However, a re-occurring
challenge is to avoid enhanced cementation near the injection area.
It is well accepted that this issue occurs because the injected bacte-
ria do not get distributed evenly throughout the entire length of the
porous system before calcite precipitation is induced. This demon-
strates the need for a detailed understanding of how S. pasteurii is
transported through porous systems. Critically, ureolysis-driven
calcite precipitation is being developed for application in subsur-
face rock environments, thus we cannot rely on breakthrough data
from unconsolidated columns and must enhance our understand-
ing of bacterial transport in consolidated rock systems.

2. Methodology
2.1. Bacterial culturing

Transport studies were conducted with the soil-inhabiting, ure-
ase-positive bacterial strain S. pasteurii (ATCC 11859). S. pasteurii
was grown at 30°C in brain heart infusion broth supplemented
with urea (20 gL™!). Cells were harvested by vacuum filtration
once they reached the stationary phase, i.e., all nutrients were used
up and no further cell divisions occurred. S. pasteurii suspensions
were prepared in deionised water at the desired optical
density and adjusted to pH 7.5 (see details in Tobler et al., 2011).
The tested bacterial densities of 0.1, 0.5 and 1.0 ODggo correspond
to approximately 3.7 x 105 3.3 x 107, 8.6 x 107 cellsml~’,
respectively (based on the S. pasteurii OD/cell number conversion,
Ramachandran et al., 2001). Note that the OD of the injected
bacterial suspensions remained constant over the course of the
experiments (between 30 and 90 min) showing that no additional
cell divisions occurred. Moreover, the viability of S. pasteurii cells
was not greatly affected by their exposure to deionised water
and transport through the sandstone matrix as verified by
measuring similar ureolytic activity in the influent and effluent
(approximately 10 mM min~! OD™1).

2.2. Experimental details

Experiments were conducted with Bentheimer sandstone cores
(3.6 cm diameter; Kocurek Industries). Bentheimer sandstone is a
fairly homogeneous rock, consisting mainly of quartz (~95%) with
a small fraction of feldspars and clays (<5%) and trace amounts of
calcite and dolomite (Maloney et al., 1990). It lacks sedimentary
structures and is characterised by irregular grains and a wide grain
size distribution (diameters between 80 and 600 pm, average
~190 um), which is slightly screwed to larger grains (Dautriat
et al., 2009; Maloney et al., 1990). The porosity of the sandstone
was 23% and the permeability was 2.4 x 1078 cm?.

Rock cores were, encased in a silicon tube sleeve (3.6 cm inner
diameter) with PTFE in- and outlet plugs. The silicon tubing pro-
vided a tight fit around the cores and plugs ensuring that the in-
jected solution passed through the core and not along the sides.
Prior to any experiments, air was pumped from the sandstone
cores, which were then saturated and flushed with deionised
water. Flow-through experiments were carried out in vertical posi-
tion, with bottom to top flow. The transport of S. pasteurii through
Bentheimer sandstone was examined as a function of varying rock
core length (1.8, 3.8 and 7.5 cm), bacterial density (0.1, 0.5 and 1.0
optical density at 600 nm), and injection rate (1 and 3 ml min~',
Table 1). Nitrate (0.3 mM) was used as a conservative tracer. For
all experiments, 2.7 pore volumes (Table 1) of either bacterial sus-
pension or tracer were injected and then the flow was switched to
deionised water. 1 ml effluent samples were continuously col-
lected throughout the injection process and the bacterial and tra-
cer concentration were determined by measuring their optical
density spectrophotometrically at 600 nm and 220 nm, respec-
tively. Most experimental conditions were tested in triplicate with
each replicate experiment conducted on a different day and using a
fresh sandstone core. This ensured that the observed differences
accounted for slight variations in rock texture and structure and
confirmed reproducibility. Effluent concentration profiles over
time were normalised to influent bacterial and tracer concentra-
tion, respectively and plotted versus eluted pore volume. Replica
breakthrough curves were averaged and then compared with re-
sults from mathematical modelling detailed below.

2.3. Bacterial transport modelling

The transport of bacteria in porous matrices is controlled by
several processes normally described using an advection

Table 1
Tested experimental conditions and % recovery of tracer and bacteria as determined
from the area under the breakthrough curve.

Injected media Core length ~ Flow rate®  # Replicas % Recovery
(cm)? (ml min~")

0.3 mM NO;3 (Tracer) 1.8 1 3 100+ 0.4
3.8 1 3 100+1.4
7.5 1 3 100+ 0.9
7.5 3 3 100+ 0.0

0.1 OD S. pasteurii 3.8 1 2 36.0+£8.0
7.5 3 1 16.3

0.5 OD S. pasteurii 1.8 1 3 63.9+17.9
3.8 1 3 34.6+11.0
7.5 3 1 19.5

1.0 OD S. pasteurii 1.8 1 3 745+94
3.8 1 3 43.6+13.9
7.5 1 3 103 +5.7
7.5 3 1 24.2

2 Pore volumes for 1.8, 3.8 and 7.5cm cores were 4.5, 9.4 and 18.4 cm’,
respectively.

b Flow rates of 1 and 3 ml min~" correspond to interstitial velocities of 5.8 and
17.5 m/day.
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dispersion equation (ADE) modified with mass transfer terms in
account for attachment/detachment/straining of bacteria and/or
decay terms due to bacterial inactivation, grazing or death (Tufenkji,
2007). For this study we used COMSOL Multiphysics (v. 4.3a) to
test a variety of model structures based on existing 1-D ADE ap-
proaches for packed columns in the literature in order to test
which processes needed to be included to reasonably match the
observations made in a homogeneous sandstone rock. The best
model formulation included an irreversible attachment process
(kC) as well as a kinetic reversible attachment process (dS/dt) in
the form of a Langmuir isotherm (bilinear adsorption model;
Fetter, 1998) as follows:

aC 8*Cc aC oS

o Par VK% W
oS

E = K]_(ch(smax - S) - S) (2)

where C is the concentration of bacteria (OD) or solute in the aque-
ous phase at distance x and time ¢, S is the concentration of revers-
ibly attached bacteria (OD) up to a maximum of Sp., v is the
average linear velocity (equal to the fluid flux divided by the poros-
ity), Ky and K; are partition and Langmuir coefficients respectively,
and D is the coefficient of hydrodynamic dispersion defined as:

D=ov+D, 3)

where o is the hydrodynamic dispersivity and Dy is the coefficient
for molecular diffusion or bacterial motility. The irreversible attach-
ment coefficient k may include terms for both straining (physical
filtration) and attachment (physicochemical filtration), but if the
former is assumed to be insignificant (see later discussion), it may
be defined using the classical colloid filtration theory (CFT) equation
as:

3(1 — &)vnyoc
i (4)

where o, is the attachment efficiency, d. is average grain size, ¢ is
the porosity, #o is single collector contact efficiency (Liu et al.,
2011). Despite the physical theory behind Eq. (4), not all the param-
eters are able to be determined a priori and thus k remains a model
calibration parameter.

Decay terms were not included in the model as the viability and
activity of the bacteria was not affected by the experimental proce-
dure (see above). Fixed flux flow boundary conditions were used to
control the advective flow velocity and the upstream transport
boundary was defined using a concentration flux condition. The
downstream transport boundary flux was set equal to the sum of
the advective and diffusive flux components at a sufficient distance
downstream to ensure the results at the column outlet distance
were not sensitive to its position. The total mass flux at the dis-
tance from the upstream boundary corresponding with the length
of the experimental column was output from the models for com-
parisons to the observed breakthrough curves.

Models were initially run using parameters for the conservative
tracer to calibrate the hydrodynamic dispersivity term () for each
column, which was left unaltered for the refinement of the bacte-
rial transport model. Dy was then omitted since it is negligible at
the flow velocities and o values in this study. Our approach for
refining the bacterial transport model was to keep parameters con-
stant across all models to avoid ‘overtuning’ at the expense of los-
ing information about the generalisation of our results with regard
to process understanding. First the value of k was set to produce
acceptable mass balances with regard to the bacterial mass re-
tained in the columns by altering the value of «.. Then, in order
to fit the shapes of the breakthrough curves, the remaining uncon-
strained parameters (Spnqx Ky and K;) were varied to produce an

k = katt =

acceptable fit across all models. It is worth noting that the sharp
peaks, i.e., sudden increase in recovery followed by a quick de-
crease in recovery over 2-4 data points (in particular at rock core
lengths of 1.8 and 3.8 cm, Figs. 1B and 2) were visually ignored
during the manual refinement of the applied model. This was jus-
tified by the timing of the onset of the peaks coinciding with the
short interruption in fluid flow (<5s) during fluid changeover,
which then led to a sudden increase in release of bacterial cells.

3. Results and discussion

The conservative tracer nitrate yielded 100% recovery under all
tested conditions (Table 1, Fig. 1A) indicating that no tracer mole-
cules attached to the mineral surfaces of the sandstone (consists
mainly of quartz). This confirmed the assumption of elastic
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Fig. 1. Breakthrough curves of (A) the conservative tracer (0.3 mM nitrate) and (B)
S. pasteurii (1.0 OD) as a function of rock core length (both at 1 ml min~"! flow rate).
C/Co = normalised solute concentration in effluent. The dashed lines show the best
fits of the mathematical transport model. (C) Total recovery of S. pasteurii cells (as
determined from the area under the breakthrough curve) as a function of rock core
length. The solid line shows an almost linear decrease (R? = 0.98) in % recovery with
increasing core length for S. pasteurii at 1.0 OD. All data points represent the average
of triplicate experiments with associated standard deviation (¢ = 1, shown as error
bars).
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collisions between nitrate molecules and sandstone grains (i.e.,
k = 0). Initial modelling of the tracer experiments provided an esti-
mate of the hydrodynamic dispersivity, o = 0.75 cm, and this value
was then used for modelling of bacterial BTCs (Table 2).

Bacterial breakthrough curves exhibited considerably lower
recovery values compared to the tracer experiments, ranging from
10% to 75% (Table 1). This indicated that S. pasteurii cells became
trapped within the sandstone. This effect was included in the
numerical model using a first order rate equation for irreversible
attachment (the term kC in Eq. (1)), and this proved effective in
simulating the observed range of retention for the input concentra-
tions and flow rates tested. This term alone, while effective at sim-
ulating retention quantity, poorly mimicked the shape of the
bacterial breakthrough curves (data not shown). Subsequent mod-
elling indicated that a reversible loss term with the applied Lang-
muir isotherm was needed to fit the shape of the breakthrough
curves adequately (Figs. 1b and 2).

3.1. BTCs as a function of core length

Total bacterial cell recovery decreased almost linearly with
increasing core length (Fig. 1B and C). This shows that the rate at
which bacteria are immobilized within the rock matrix (i.e., % cells
per cm core length) was very similar for the three different core
lengths. This trend further indicates that if a 1.0 OD S. pasteurii sus-
pension is injected into a Bentheimer sandstone core with
length > 8 cm (under the conditions tested here), all the injected
bacteria would be distributed over the first 8 cm (where the trend-
line intercepts the x-axis, Fig. 1C) and none immobilised in the
remaining section of the core. Two mechanisms are most likely
to be causing this effect - straining (physical filtration) and attach-
ment (physicochemical filtration; Tufenkji, 2007). If straining was
a significant mechanism, this effect should be more pronounced
in the first part of the rock core and reduce with distance, poten-
tially leading to hyper-exponential retention profiles as observed
previously in unconsolidated column studies (Kasel et al., 2013
and references therein). Although the bacterial distribution along
the core seems fairly homogeneous, slightly more bacteria were
trapped within the 0-3.8 cm section (~54%) compared to the
3.8-7.5 cm section (~40%, Fig. 1C). Older studies have relied on
geometric consideration to elucidate the presence of straining,
where straining was considered likely to occur if the bacterial cell
diameter is >5% of the average grain size of the medium (Ginn
et al., 2002). In this study, the ratio of the S. pasteurii cell (average
2.8 um in size) to average quartz grain diameter (190 wm) has a

Table 2
Transport parameters as determined by 1-D modelling for sandstone.
Tracer S. pasteurii

Estimated or measured values
Velocity, v (m/d) 5.8/17.5% 5.8/17.5°
Porosity, & 0.23 0.23
Average grain diameter, d. (m)” 19x10% 19x10™*
Dry bulk density, p (kg/m?) 2104 2104
Fitted or calculated from fitted values
Hydrodynamic dispersion, D (m?/d) 0.04/0.13°  0.04/0.13°
Hydrodynamic dispersivity, o (m) 75x1072% 75x1073
Distribution Coefficient, Ky (/OD) - 5
Langmuir rate constant, K; (/d) - 100
Maximum attachment concentration, S;,qx (OD) - 1
Collision efficiency, o, - 0.3
CFT attachment rate coefficient, kg (/d) - 106.1/318.6°
Single collector contact efficiency, 7o - 0.01

3 Parameters for flow rates of 1 ml min~! and 3 ml min~", respectively.

P Taken from Maloney et al. (1990) and verified by Scanning Electron Microscopy.
¢ Calculated using Eq. (4).
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Fig. 2. Breakthrough curves of S. pasteurii suspensions with varying cell densities in
a (A) 1.8 cm and (B) 3.8 cm sandstone core. The dashed lines show the best fits of
the transport model. Each data set (except 0.1 OD) represents the average of
triplicate experiments with associated standard deviation (¢ =1, shown as error
bars).

value of 1.5%, which suggests that straining should not be impor-
tant here. However, we also note that unconsolidated sand studies
(e.g., Tufenkji, 2007 and references therein) have shown that
straining is also observed at ratios <1.5% and that this is caused
by irregular grain shapes. The sandstone used here exhibits irregu-
lar grains and a wide distribution in grain size, pore space and pore
throats (Dautriat et al., 2009; Maloney et al., 1990), suggesting that
some straining likely occurred.

If straining played a minor role then the effect of enhanced reten-
tion with increasing core length should be due to physicochemical
filtration (attachment), i.e., an increase in contact time between
bacterial cells and mineral surfaces with increasing core length.
The numerical model accounts for this via Eq. (4) and simulates
the data well, as shown by R? (coefficient of determination) values
of 0.89 for 1.8 cm and 0.80 for 3.8 cm (Fig. 1b). The only exception
is the model fit for the 7.5 cm core experiment (at 1 ml min~!,
R? = —1.65) where bacterial retention is underestimated (Fig. 1B,
dashed line, grey squares). The relatively high filtration for the long-
er consolidated cores could thus not be accurately described with
the set of model parameters, which achieved good fits at shorter
lengths. The slight discrepancy between the 7.5 cm data and model
may not be surprising as there is possibly some straining taking
place (a process not explicitly accounted for in the model) which
leads to slightly higher retention. Moreover, the presence of other
minerals (~5% of clays, feldspars, and trace amounts of calcite and
dolomite) and their different surface properties may further aid bac-
terial immobilisation. Thus overall, the attributes of consolidated
(sandstone) versus unconsolidated (sand) porous media might ex-
plain the observed discrepancies with scale.

3.2. BTCs as a function of bacterial density (OD)

S. pasteurii recovery at 1.0 OD appeared to be higher than at 0.5
OD for both 1.8 cm and 3.8 cm core experiments (Figs. 1C and 2,
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Table 1). This increase in recovery with increasing cell density was
further observed at higher flow rates (17.5 m/d) in 7.5 cm cores
(16.3, 19.5 and 24.2 at 0.1, 0.5 and 1.0 OD respectively; Table 1).
We hypothesise that the attachment coefficients are identical be-
tween experiments with varying bacterial densities (Table 2) and
the observed trend is caused by the number of attachment sites
being limited; these get saturated at higher bacterial densities,
thus more bacteria are eluted and recovered. The success of the
Langmuir form of Eq. (2) in simulating the shape of the break-
through curves (Fig. 2) is consistent with this hypothesis. In the lit-
erature, this trend has been described as ‘blocking’ and has been
observed in several unconsolidated sand studies (e.g., Tan et al.,
1994; Camesano et al., 1999 and reference therein). For example,
Tan et al. (1994) obtained identical attachment coefficients for bac-
terial BTCs for Pseudomonas with varying bacterial densities, and at
similar flow rates as tested here. Similarly, they explained that at
higher cell concentrations, finite retention sites would be saturated
much earlier which then led to enhanced bacterial breakthrough.
This further corroborates the occurrence of blocking in our
experiments.

Overall, the numerical model provided good fits to the 1.8 and
3.8 cm core data as a function of different bacterial densities (R?
values ranging from 0.66 to 0.89, Fig. 2). This showed that trans-
port of S. pasteurii (as measured by OD) in short homogeneous
sandstone cores follows similar laws as in unconsolidated sand col-
umns (i.e., CFT theory combined with blocking).

3.3. BTCs as a function of flow rate

An increase in S. pasteurii recovery was observed with an in-
crease in flow rate from 1 to 3 ml min~! (5.8 and 17.5 m/d, respec-
tively) in 1.0 OD experiment as shown in Fig. 3 and Table 1. This
trend is in agreement with colloid filtration theory and has been
observed repeatedly in packed column studies (Ding, 2010; Ginn
et al., 2002; Hendry et al., 1999). It is explained by a decrease in
number of collisions with increasing bulk fluid velocity (i.e., con-
vection becomes the dominant transport process). As a result, bac-
terial contact with grain surfaces decreases and thus the possibility
for adsorption and bacterial retention reduces. While a difference
in breakthrough was observed experimentally, the model failed
to simulate this difference (Fig. 3). This shows that the applied
model is not very sensitive to variations in flow velocity and thus
suggests the simple relationship between CFT irreversible attach-
ment and fluid velocity (Egs. (1) and (4)) is not entirely adequate
to simulate the experimental results in this regard for the sand-
stone tested here. Indeed, the presence of some straining could
partly explain this discrepancy. Straining is predicted to increase
with decreasing flow rates (Cushing and Lawler, 1998), and this
has also been shown in bacterial transport studies in unconsoli-
dated material (e.g., Bradford et al., 2006). Thus, we speculate that
the larger difference in bacterial recovery observed in the experi-
mental data is likely due to straining having a higher impact at
the lower flow velocity (5.8 m/d), while at 17.5 m/d straining is
less noticeable, and hence we observe a better agreement between
the data and model at v=17.5 m/d (Fig. 3). As discussed above, we
also envisage that the presence of some minerals other than quartz
(with different surface properties) affect bacterial transport behav-
iour, an aspect that is difficult to include in models, without con-
straint from further laboratory data.

It is important to note that at lower flow rates, diffusion and
dispersion as a result of bacterial mobility can considerably affect
bacterial breakthrough (in comparison to non-motile bacteria).
Studies of bacterial transport in sand columns indicate that as pore
velocity decreases, recovery of non-motile strains decreases, while
recovery of motile strains increases or remains the same (e.g.,
Camesano and Logan, 1998; Liu et al., 2011). The bacterium S.
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Fig. 3. Breakthrough curves of tracer (0.3 mM nitrate) and S. pasteurii (at 1.0 OD) as
a function of flow rate in a 7.5 cm sandstone core. The solid and dashed lines show
the best fits of the transport model to the 1 ml min~! data (triplicate experiments)
and 3 ml min~"' data (single experiments), respectively.

pasteurii studied here is motile (Vos et al., 2009). However, we
observed lower % recovery with decreasing velocity as would be
expected for non-motile strains. We thus hypothesise that for this
particular motile strain, bacterial diffusion and dispersion played
a negligible role at the flow velocities (5.5 and 17.5 m/d) and
experimental conditions tested here.

3.4. Comparison between consolidated and unconsolidated material

This study aimed to enhance our limited understanding of bac-
terial transport in consolidated rock by providing experimental
breakthrough data combined with numerical modelling. Results
showed that bacterial trapping in homogeneous sandstone is sim-
ilar to transport through unconsolidated sand, however, there are
discrepancies that are difficult to explain with existing models
for unconsolidated sand.

At velocities of 5.8-17.5 m/d, rates that are comparable to those
used for subsurface field injections (e.g., oil recovery, pump and
treat approach), less than 20% of the biomass was recovered at
the end of a 7.5 cm long sandstone core. In sand columns, with
equivalent dimensions and at identical flow rates, a recovery great-
er than 80% is observed (e.g., Liu et al., 2011). Indeed, sandstone
exhibits a considerably lower porosity (23%) and a lower perme-
ability (2.4 x 1078 cm?) compared to a packed column (38% and
4.5 x 108 cm?, respectively), and this certainly explains some of
the observed differences in recovered biomass. The applied numer-
ical model, which is based on 1D ADE models successfully used for
unconsolidated sand, shows very good agreement for the short
rock core experiments (i.e., 1.8 and 3.8 cm, Figs. 1B and 2). At long-
er distances (i.e., 7.5 cm) and under different flow rates, the agree-
ment between data and model is however, less satisfactory,
suggesting a ‘break down’ of the applied model. It is difficult to pin-
point the parameters responsible for this divergence, particularly
in the absence of many other studies that quantified and modelled
bacterial breakthrough in rock matrices. Possibly, attributes of this
consolidated rock including a wider grain size distribution, smaller
pore spaces and throats, along with higher abundance of dead-end
pores (due to cementation) and irregular grains have contributed
to some straining taking place. Moreover, the presence of other
minerals will have certainly affected physicochemical filtration.
The relationships between pore velocity and attachment in consol-
idated natural samples is thus not as simple as in unconsolidated,
pure systems.

It is important to reiterate that Bentheimer sandstone is a fairly
homogeneous rock, consisting mainly of quartz (95%) with a small
fraction of feldspars and clay (<5%) and lacking sedimentary
structures (Maloney et al., 1990). Many other natural porous rocks
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exhibit a smaller porosity and permeability, smaller pore throats,
and in many cases they are also more heterogeneous in texture
and mineralogy. Thus, to improve current transport models to
allow prediction of bacteria injected into subsurface rock environ-
ments, as required for several subsurface technologies, more work
needs to be focussed on characterisation and understanding bacte-
rial transport through rock matrices. More BTC studies will in-
crease understanding of bulk processes, but new approaches and
techniques will also need to be developed to provide spatially re-
solved data to allow correlation of small-scale variations in rock
structure and texture to bacterial attachment behaviour.

3.5. Implication for ureolysis-driven calcite precipitation

This study shows that S. pasteurii cells are easily trapped in
sandstone (3.6 cm diameter, 1.8-7.5 cm length), even at relatively
high velocities, i.e., 6.2 m/d. It is shown here and in previous stud-
ies that bacterial transport can be enhanced if injection rates and
thus interstitial flow velocities are increased. Moreover, once min-
eral surfaces within a rock specimen are saturated with bacterial
cells (as implied by the Langmuir kinetic model), an increase in
bacterial breakthrough may be expected. It is, however, likely that
continued bacterial injection will eventually lead to clogging of
pore throats, and reduction of permeability, an aspect that should
be investigated in future studies.

An interesting observation is that although slightly more bacte-
ria were trapped within the first few cm (~54% in 0-3.8 cm section
compared to ~40% in 3.8-7.5 cm section), bacterial distribution
along the core was fairly homogeneous (Fig. 1C). With regards to
the use of bacteria to induce mineral precipitation for pore space
filling, we can thus assume that cells get relatively evenly distrib-
uted along the rock core during the initial bacterial injection (un-
der the tested conditions). This even distribution of cells would,
at least in the first instance, be advantageous as it would help to
ensure a more even spread porosity reduction. It is therefore
important to understand what happens thereafter. In most cases,
a solution of CaCl, and urea is injected to induce calcite precipita-
tion. This will lead to the formation of new mineral surfaces within
pore spaces (Cuthbert et al., 2012). Critically, this will change the
size and distribution of pore spaces and pore throats within the
rock, surface reactivity and flow dynamics. Furthermore, the pres-
ence of new calcite surfaces is more favourable for S. pasteurii trap-
ping (in comparison to quartz, Tobler et al., 2012). If more bacteria
are then injected into this modified matrix (as would be required
to continue pore space filling and sealing), we can assume that bac-
terial distribution and % recovery will be substantially different
compared to the initial injection. To what degree, however, is dif-
ficult to predict, as to date there is little other data on transport
in consolidated material available. Thus, further investigations
are needed to advance process understanding in rock, and to help
improve implementation strategies for microbially mediated sub-
surface technologies being developed worldwide.
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