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Quasi-infrared fixed points and renormalization group invariant trajectories for nonholomorphic
soft supersymmetry breaking

I. Jack and D. R. T. Jones
Division of Theoretical Physics, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
(Received 6 October 1999; published 14 March 2000

In the MSSM the quasi-infrared fixed point for the top-quark Yukawa coupling gives rise to specific
predictions for the soft-breaking parameters. We discuss the extent to which these predictions are modified by
the introduction of additional “nonholomorphic” soft-breaking terms. We also show that in a specific class of
theories, there exists an RG-invariant trajectory for the “nonholomorphic” terms, which can be understood
using a holomorphic spurion term.

PACS numbds): 12.60.Jv, 11.10.Gh

[. INTRODUCTION since we only require naturalness up to the stald@his was
emphasised recently by Martjt], who also pointed out that
The enduring popularity of the minimal supersymmetricby the same token there are dimension-4 supersymmetry-
standard modeIMSSM) derives originally from the demon- breaking contributions whickalthough suppressed by more
stration that it gave rise to gauge coupling unification, at gpowers of 1M) may give rise to interesting effects.
scale consistent with proton decay limit least with regard Returning to the terms shown in Ed..2), however, there
to contributions from dimension 6 operatbr§his success is are two reasons why we should consider them. First, their
predicated or(or at least consistent wittthe desert hypoth- suppression compared to Ed..1) is founded on a specific
esis, whereby the next fundamental physics scale beyond tHeamework for the origin of supersymmetry breaking which
weak scale is far beyond it: gauge unification, a string scalenay or may not be true; secondly, even given the frame-
or even the Planck mass. Within this context, a “standard”work, the recent model-building trend has been away from
picture of the origin of supersymmetry breaking hasthe desert hypothesis: for example, in the suggestion of
emerged: supersymmetry is broké@ynamically or sponta- (very) large extra dimensions. It is not clear to us whether in
neously in a distinct sector of the theory and transmitted tosuch theories the suppression of Ed.2) relative to Eq.
observable physics via a “messenger sector.” At energie$l.l) will necessarily be sustained. Be that as it may, we
below a characteristic mass scélethe observable effective believe that there is a case for an agnostic approach to
field theory can be expanded in powers ofM1/then we supersymmetry-breaking whereby all dimension 2 and di-
suppose that the breaking of supersymmetry can be parammaension 3 terms are considered without prejudice, in theo-
trised by the vacuum expectation value of #hegerm of a  ries where they do not cause quadratic divergences.
chiral superfieldZ, such thatfF ;)~M;M, and it is easy to In a previous papdr2] we gave the one-loop functions
show that the following soft terms a@(M): for the parameters defined in E4.2), both in general and in
the MSSM context. In this paper we extend the general re-
1 ik sults to two loops. We findand verify through two loopsa
Eh bidibx renormalization-grougRG)-invariant relation which can be
imposed between, b, m?, andm,. We also investigate the
consequences of Yukawa infraréahd quasi-infra-redfixed
point structure for the MSSM, where we find that sothat
not all) of the predictions founded on the MSSM survive in
whereas the following further possible dimension 3 terms ar¢he presence of the nonholomorphic terms.
suppressed by powers df,/M:

L= (m?)) 4 ; +

1 1
+§b"¢i¢j+§M)\)\+H.c.), (1.2)

1 1 IIl. THE B FUNCTIONS
L(sgtzzr{k¢l bidict 5 MEgi g+ MLgiNatH.C. (1.2 We begin with the one-loog functions for a theory with

The terms in Eq(1.2) arise from nonholomorphic term® L=Lsusvt Lsott 2.3
termsg in the effective field theory, so we will refer to them
as nonholomorphic soft termjgn abuse of terminology, in
fact, inasmuch as of course the first term in Ef.l) also Leoi= Légﬁ' L(S%}t (2.2)
arises from a nonholomorphic tetm

In fact, if there are no gauge singlets, the terms in Eqand wherel gysy is the Lagrangian for the supersymmetric
(1.2 are “natural” in the same sense as those of @gl), in  gauge theory, containing the gauge multidlag, ,\} (\ be-
that they do not give rise to quadratic divergences; but in anyng the gauginpand a chiral superfield; with component
event(within the paradigm described abovene would not  fields {¢;,¢;} transforming as din general reduciblerep-
exclude them even if they do give quadratic divergencestesentatiorR of the gauge groug. (We give results here for

where
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a simple gauge group, though the extension to a nonsimple 16728y =29°QM, (2.100

gauge group is straightforwaydVe assume a superpotential

of the form

1 ik
W=5Y"did;dby. (2.3

Note that we do not include an explicit supersymmejgic
term in W: the usual theory containing only}) together

soft
with a supersymmetrig. term can be recovered by taking in
LS

mg=0, me=pu, rj=Yky, (2.4
and replacing 1©12); in L{, by (m?)j+ w1 ;-
The one-loop results for the gauge couplgdunction g4
and for the chiral field anomalous dimensigrare
16m%B,=0°Q and 167%y',=P';, (2.5
where
— i _1 ikl 2 i
(2.6)
Here
T(R)Sapb=Tr(RaRp), C(G)Sap="Ffacdfpca, and
C(R)j=(RaRy)'j, (2.7

and as usuaY}, = Y'K, etc. For the new soft terms from Eq.
(1.2) we have[2]

16772,8mF” = PXmgy+ PK Mgy, (2.8a
167 B, = P'iMajat 9°QMyja, (2.8p
and
1 1
1672l =5 Phrl +PAr 4 S 1YY
+2rY Y+ 292 *C(R)';
+29°rM(Ry) " (Ra) =2y Y™ IYPRY
—4g%mg; C(R)',, Y™k
—4gvV2[g°C(G)ME(Ry)Y
+(R)IYIMRY L ima® ]+ (ke ). 2.9

For the original soft terms in Eq1.1) we have

16m2 81k = Yilk 4 ykil 4 yiki, (2.103
16281 = Vil + Vi, (2.10b
1672 B2l j= W, (2.109

where
Uik = hill pK 4 vl XK | (2.113

Vil = bil Pl 4 rlhiM 4 Ml yiimg - yink

+4g°MmEC(R))—4g%C(G)mPmi2,  (2.11b

i 1 pPaAN 2\ i 1 ipq 2\n
WjZEY]qu (m ) n+ EY qun(m ) j

+2YPAY, 0 (m?) g+ hypgh P+ 1+ 2r

_4(mF M, + mAmamA )Ylmankn

— 892 [MM*C(R)'j+m'me, C(R)' |+ C(G)m2my),
+(RaRy)'; mAkamA] 4v29[ Y ™ Mg Ry) "iMaja
+ij|mF (Ra)lnmA (2-11()

with
X' ;=h"Y, +49°MC(R)'; . (2.12

Note that we have omitted from E(R.109 a contribution of
the formg?(R,)'; Tr[R,m?]. This term arises only fou (1)
and amounts to a renormalization of the linBaterm that is
allowed in that case. The two-logp functions are listed in
the Appendix(for the caseng=0).

There has been much interest recently in RG-invariant
relations expressing the usual soft couplirgs hiik, and
(mz)'j in terms of theB functions for the unbroken theory. In
Refs.[3] these relations were derived from the superconfor-
mal anomaly, while in Ref.4] they were derived using exact
results for the soft-breaking functions obtained using the
spurion formalism. From the latter point of view, there
would seem na priori reason to expect such RG-invariant
results for the new nonstandard couplings. The reason for
this is that the spurion formalism enables us to relate the
renormalization of the standard soft terrid, h'%, and
(m2)' to the anomalous dimensionof the chiral superfield.
This does not carry over to, for example, the caser’bf
because the corresponding superspace mteractldnz@*
which is nonrenormalizable and hence leads to divergences
beyond those described by It is (at first sighi surprising,
therefore, that it is in fact possible to develop RG-invariant
expressions for the nonstandard couplings. We start by writ-
ing mg= w in Egs.(2.8—(2.11), since, as we shall explain in
more detail latermg will effectively be playing the Tt of a
supersymmetriqu term. Then first, the relation

i =v2g[(Ry)im+ (RyXmid]+ Y u,  (2.13

defines a renormalization-group trajectory fdf. If we im-
pose Eq(2.13 in Eq. (2.9), we find
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(Br)§k=ﬁﬂg[(Ra)jim/P&a+(Ra)ki mi2]+v2g[(Ry)!; Bk where®?( ¢, #,F) is a chiral superfield in the adjoint repre-
A sentation and
k pja ikl Klg
+(Ra) |,8mA]+ﬁY mitY B/.LH' (2.14 W3=>\Z—Da9a+"' 2.21)
This clearly implies that Eq(2.13 is RG invariant. Now
suppose that in the usual theory, with a supersymmetric
term and only the soft terms contained liit);, we have

is the usual superspace gauge field strength. In the Wess-
Zumino gauge this reduces to

solved the RG equations, with the .functiomﬁo‘j and b Leoi= Ma(N2¢2+c.c) —v2ZmpD3( 2+ ¢*?). (2.22
being the solutions forr(12)'j and b". If we additionally
impose When the auxiliary fieldD is eliminated this produces the
o o following contributions to the Lagrangian
b =bd+2mi'md’, (2.19
1
we find, on imposing Eq(2.15 in Eq. (2.10b), L=ma(\*y2+c.c)+ S [g* RAG+VImMa($%+ ¢+
d (2.23
ij_ = Rij ai aaj ai paj
b~ K du bs + Z'BmAmA +2my my’ (2.19 which, it is easy to see, precisely accounts for all the terms in

Eqg. (2.19. The fact that we were forced to place the chiral
which implies that Eq(2.15 is RG invariant. Finally, if we  superfield in the adjoint representation to obtain an RG in-
set variant trajectory is now simply understood in that for such a

Aa o oo " _ field we can obtain all our “nonholomorphic” soft breakings
mMempa=pd'y, (M%) =(m)'j+ " my;+2p8';, from a singleholomorphicterm, Eq.(2.20. Moreover, the
(217 fact that it is holomorphic means that we can immediately
apply the nonrenormalization theorem to show ttat the

where p is an arbitrary constant, and the matter multiplet,_ "
trajectory

satisfiesC(R)';=C(G) ¢';, then we find on substituting Eq.
(2.17 into Eq.(2.109 that B
Eg +y|m,. (2.24

d IBmA:
(,3m2)ij:Md—(mg)iﬁﬂ':ﬂkﬁ#ikﬂ#kj . _ , _
H It is easy to verify this result through two loops using Egs.
+ Zﬁer::AmAaj_’_ZmiiBmAaj , (2.18) (2.8'3)- (AZ).

demonstrating the RG invariance of E@.17). Note that ll. THE MSSM

here we are including a supersymmefiderm. To be more Retaining only the third generation Yukawa couplings we
explicit, another way to phrase our results is to say that in &aye the superpotential

theory with W=3Y'"*¢,¢p; b+ 3 ' i ;, together with

i_ig;]ﬂsas in Eq.(2.2), but takingm:=0 in Eq.(1.2), the rela- W= )\IHZQT+ )\leQH'f‘)\THlL?, (3.1
rfk=ﬁg[(Ra)jim'Z\a+(Ra)ki mk‘]. (2.193 and soft breaking terms
3
bl = bl + 2maima (2.19H Lé%%ﬁ% mG* ¢ | mEH Ho+ >, %Mi)\i)\i+H-C-
MM =pdly, (M) =(m)'j+2pd (2.199 +[ANH2Qt+ANH Qb+ AN H;L7+H.c]
are RG invarianfonce again with the proviso that the matter (3.2

multiplet satisfiesC(R)';=C(G)d'; in the case of Eq.

(2.190]. Using the two-loop results given in the Appendix,
we can show that the trajectory is also RG invariant at two-
loop order. In the special case of a one-loop finite theory

and settingu = 0) the above trajectory was described in Ref. — _
EZ] setting.=0) v ! ywas deschi ! +ANHIL7+H.c. (3.3

and

L= Myt Y, + A HT Qt+ApA,H3 Qb

The existence of the RG trajectory described by Eq. S ) ) 5
(2.19 can in fact be understood using spuriéne are most f We setm,=A,=A,=A;=p andmj ,—mj ,+ u° then we
grateful to the referee for pointing out the following argu- récover the MSSM(A note on notation: in our previous
menj. Consider the term paper [2] we followed Inoueetal. [5], who usedm,
=my,A.=mg,Ap,=m;,A;=mg, and correspondinglyA.
-~ A A2 =mg, A,=Mg, andA;=my,.) As in Eq. (3.1 we assume
LSO“_‘/?mAJ 0W, "9+ c.c., (2.20 third generation dominance hefthis may not be true, of
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course. In fact we neglect all mixing between the genera- .
tions and all couplings associated with the first two genera- ar - AT 3ypAp— > CleM;,
tions throughout; for the generalisation to include thése '
the absence of our nonholomorphic tejrimsthe quasi-fixed-

point context, see Ref6].

The supersymmetric couplings evolve according to the

well-known equations

da/i 2 )
H:_bia’i, (|21,2,3) (343
dy
d_tt:_Yt GYt+Yb_2i Citai), (3.4b
dyp
FTERERL GYb+Yt+yr_2i Cibai)! (3.49
dy, .
dt =—Y; 4y7'+3yb_zi Ci ai)! (340)
wheret= —(1/2)In w,
2 2
o A
aizﬁ, tzﬁ, etc., (3.5
and
b 33l 3 ol 133 16
i— ga ' l i~ 1_51 1?1
b 7 16 9 .
CP= 1_5,3,3 , C/= 5,3,0 , 1=1,2,3. (3.9

It is straightforward to show from our results that

dm
d_tl,//:_E yr+3Yb+3yt_22i CiHai>m¢, (373
dA, 1 N y
= 5 (. Y5 3y)A,~ Byhy
+(2m¢—KT)E CiHai' (3.70
I
dA, 1 NN A
=~ 5 (3 5V DAL= ALy, yi(2m,—A)
+(2m¢_Kb)§i: Claj, (3.79
da, 1 N A
St =~ 3Vt 5yt BY)AF Yp(2m,— Ay)
+(2m‘/’_Kt)§i: CiHai , (3.70

PHYSICAL REVIEW D61 095002

(3.7¢
dA,
gt = YA BYbA YA D ClaiM, (3.7
W:_ybAb_6ytAt_2i Cita’iMi’ 3.79
dm? 2 2.2, 2 2, p2, 2, 2
~r = VAmi+ AT mE 4 mE) = 3y (mi+ AL+ Mg+ my)
—3yth2+22i Cllaj(mj+M?), (3.7h
dmg 2 2 2 2 N2 N2
W=_3yt(m2+At+mQ+nT)_yTAT_3ybAb
+22i Cllay(mi+MP), (3.71)
dm% 1 2 ~ N
St =~ 3 (Vo3 3y ms—y AA— BypALA,
-~ L H 2 i
—3VAAT 5 Z Clai(mg—2Mim,),  (3.7)
dmz
_dtQ:_Xb_Xt+22i Cla;M?, (3.7K
dm? .
W:—zxt+22 ClajM?, (3.7))
I
dm? o
WZ—be-‘rZz CibCYiMiZ, (38.7m
|
dm?
d_th—xT+22 clam?, (3.7
I
2 —
G = 2% 423 ClaM?, (3.79
|
dM,
ot = biMiai, @.7p
where
co_ 1 38 oo 808 CE— 208
=130°2'3) 15°'3 1573
c=(200], cr=2 20| =123 @8
_g,’, i_E,E,, |_;11(')
and where
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X¢=yi(mg+ mf—+ m3+AZ+AZ—2m3),
Xo=Yp(M3+ M+ mi+ A+ A2—2m2),
X, =y (mZ+mi+mi+AZ+AZ—2m?). (3.9

A. The small tan B8 region

PHYSICAL REVIEW D61 095002

Adt) ={A(0) +ByoM[ tf(t)—

1 df
Otma.

(3.1

It is instructive to note that the boundary condition on the
gaugino masses plays a crucial role in determining the form
of the solution. Thus if we take instead

M;(0) =mgb; g, (3.18
then we obtain
At:H6[At(O)+mS/Z( 6)/0_2i Cita’o)
My >, Clai() = 6y(D)], (3.19

which, if we impose the initial conditiom\;(0)+ m3(6yq
—EiC}ao)zo, is the one-loop form of the conformal
anomaly solutiorf3,4] for A;.

Proceeding with Eq(3.17, we can(with more laboy
solve Eqgs(3.7h), (3.7i), (3.7k—(3.70), giving

2 4\ 2 2§ 3
M3(1)=m3(0)+ M| 5 fa(t)+ 5 f (t)+ f1(1)

In the small tarB region where we takg,=y.=0, Egs.
(3.43, (3.4b) are easily solved to give
S 3.10
ai(t)= m, (3.109
yi()=yof (t)He(t,Y0), (3.100
where
f(t)=TT [1+b;eot]C™, (3.1
1
and
t
Heg(t,yo) = TT6yoF (D) F(t)= fof(T)dT (3.12
and whereyy=Yy,(0) and we assume a common initial gauge

coupling«;(0)= ag at a unification scal® . We then eas-

ily solve EQs.(3.79—(3.70 to give
m,(t)=Hs(t,yo) " (t)m,(0), (3.133
A(t)=1+F(t) " A(0)—1], (3.13h

Ap(t) =14 Hg(t,y0) Y6 (1) ~2[A(0) +.Ap(0)— 2]

+1(t) " 1- A,0)], (3.130
A(t)=1+F(t) A (0)—1], (3.139
where
Tt)=TT [1+b;aqt]S ™, (3.14
and
A A _ALY)
A‘_—m.,,(t)’ Ab_—mw(t)’ A, 0 (3.19
Using the elementary solution of E(.7p),
Mi—m, (31@

where we assume a common initial gaugino mitg0)
=My, we can also solve Eq3.79), giving

1
+ 6A(t)+Y(t),

2 > 8 1
mi(t)=mg(0)+Mg| 2 3(t)+15 t))+ ZA()+2Y(1)
8
my=m(0)+ M|  fo(1) +—f1(t)),
mz(t)=m2(0)+M2(3 (t)+ t))+ SA(H)—-3Y(1),
2 2 2

2 2 o[ 3 3
mi(t)=m37(0)+ Mg Efz(tH‘ Efl(t))

+{T(t)?m,(0)2+2m,,(0)[A(0)
—m,(0)]}He(t,yo) V2 m,(0)
X[m,(0)—2A(0)]—3yo[A(0)

—m,(0)1%Q 6,312 (1),

mZ(t)=mZ(0)+ M3 §fz<t>+3fl<t>)
2 10 !

m%(t)zm%(0)+gmgf1(t) (3.20

where
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1 with C*=(%,3,%%), and
(o= (1 (b, aotF)
-t Ew= [ Fma
A =[E(0)~ AL0)]Hg(t.Yo) + {A(0)+ EMoyo[t (1) Hiltyo= e PO J T
) ) 5 ,df (3.26
—F(t)]}“He(t,y0)“— 6yoMgHs(t,yo)t a_z(o)
Note thatCtzb3 C}, ;= C5 5 while we have chosen to set
+{m,(0)ZF(t)2—m,(0)[m,(0) =3(C} +Cl) (In fact, it makes very little difference if we
o ’ v v o instead us€™®=C!, in which case =f andF=F.) We can
— Al0) THH,(t,Y0) Y2+ {m,(0)[2A(0) — 3m,(0)] then solve Eqs(3.7a—(3.70d) to obtain
—3[Ai(0) —My(0)12Q 6,172 (1) He(t,Yo), (3.2 m,(t)=H7(t,yo) ¥ (t)m,(0), (3.273
with 3 =m3+ m%+ m3, and where 1.
A(t) =1+ Ef(t)_ZHY(tvyO)2/7[At(0)+Ab(0)_2]
t ~
Qan(0= [ 1) PHryodr @22 .
0 + Ef(t)_z[At(O)—Ab(O)], (3.27H
and
1.
1 o Ap(t) =1+ 5f(t)72H7(t,yo)2’7[At(0)+Ab(0)—2]
Y(t)=— E{mw(O) f“+2m,(0)[m,(0)
1.
—Ad(0)}He(t.yo) " = 51O 7LA0) =~ A(0)], (3.270

1 _
— — 1 4
+ 6m¢/(0)[3m¢1(0) 2At(0)] AT(t):1+ H7(t,Y0)3/7f(t)Z[AT(O)'i'gAt(O)_gAb(O)

1
— _ 2
2yO[At(O) mz//(o)] Q(6,3/2)(t)- (323) (t y0)2/7f(t) Z[At(O)+Ab(O) ]

510

Once again, use of the alternative boundary condition Eq. 1.
(3.18 and the corresponding solution f8¢(t) leads instead — zf(t)*z[At(O) —A,(0)]. (3.270
(with appropriate initial conditions for the masgde the
conformal anomaly form for then® terms. This we leave as
an exercise for the reader.

In the special case of the MSSM, explicit solutions for the
soft parameters were written down in Refg]. Recently A (1)=
Codoban and Kazako\8] have given an elegant derivation
using the spurion formalism; their results may be obtained by A
settingm,=A,=A,=A,=0. We note that in the more gen- 1 df
eral c?isewconside?ed r:ere it is not possible to obtain agsimple X H7(t.yo) = Mot a dt + [ E[At(o) ~Ap(0)]
closed form formg(t). However, this is not a major draw- (
back since in typical running analyses3(M;) is in any
case derived by minimizing the effective potential. +5yoMo[tg(t) —G(t)]

We also find from Eqs(3.7f), (3.79 that

1 .
[At(0)+Ab(0)]+7y0M0[tf( )—F(t )]}

Hs(t,yo)—M t—d—g
5(t,Yo a(D) dt

B. The large tan g region

1 . .
In the large targ region, if we make the approximation Ap(t)= —[At(O)+Ab(0)]+7y0M0[tf(t)—F(t)]]
[9] yp=VY:=V,Y,~0, the Yukawa coupling is given to a 2
good approximation by

1
E[At(o) —Ay(0)]

1 df
XH7(t,yo) = Mot — ——
f(t) dt

y(t)=yof () H7(t,yo), (3.29
where 1 dg
+5yoMo[ta(t) —G(t) ] Hs(t,yo) + Mot — —,
ft)=TT [1+bjagt]C " (3.29 glv) dt
i o ’ ' (3.2
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where
g=[1+bjayt]c’Ps, (3.29
with 2¢,=C!—C®=1/5, and
— cy/by+1_
G (C1+b1)ao{[1+bla0t] 1751 1},
Hs(t,yo)= (3.30

1+5yE(t)

With the further assumptionsA,(0)~A,(0), Ap(0)

~A((0), m2~m3, m%mnyz and usingg(t)~1 and G(t)

~t, EQs.(3.27), (3.28 simplify to
m,(t)=H-(t,y0)*F()m,(0), (3.313

A=Ay =1+T (1) "2H(t,y)?TA0)— 1],
(3.31b

3 2
A= 14Ho(tyo) (D) 2 A0~ 5 AO)- &
3
+ g Hiltyo) ? ("2 A(0)~1], (3319

A1) =Ap(t) ={A((0) + 7yoMq[ tF () = F(t) IH(t,Y0)

Vo 1 df
0 dt’

- (3.319
f(t)

PHYSICAL REVIEW D61 095002

X[H7(t,yo) Y= 11HH(t,Yo), (3.33

with

~ 2
Y(0)==7my(0){1-Hq(tyo)*F()%. (334

Q is defined likeQ in Eq. (3.22, except thaf —f.

C. Quasi-infrared fixed points and sum rules

The possibility that the weak-scale values of various pa-
rameters in the MSSM are governed by quasi-infrared fixed-
point (QIRFP behavior[10] has received a good deal of
attention; see, for example, Ref&], [8], [9], [11-14. In
this scenario, the value of the Yukawa coupling at the weak
scale is close to the value corresponding to having a Landau
pole at the unification scale. It follows that this value will be
obtained for a wide range of input Yukawa coupling$/gt .

In the small tarB case, for example, we have from Eq.
(3.10h that when §yF(t)>1 theny,~f(t)/(6F(t)), inde-
pendent ofy,. Moreover, since=(M;)~18 it follows that
there is a range of perturbatively believable valuegguch

that the QIRFP is approachedMt, . (For a discussion of the
extent to which this scenario is preserved at higher orders,
see Ref[12].) In what follows we will investigate whether
this behavior of the Yukawa coupling causes QIRFP behav-
ior for the soft parameters, simply by taking the limit of large
Yo. and examining whether the results are independent of the
initial conditions atM ;. Of course whether the range w§
corresponding to close approach to any resulting QIRFP in-
cludes perturbatively believable values will depend on the
details of the solution.

and we find that with these assumptions we can obtain the s from Eq(3.17 we see that for small taBand large

following explicit solutions for the soft masses
2o ,[8 3 1
(1) =mg(0) + M| 5 fa(t)+ 5 fa(t) + 55 fa(t)

A)+Y(L),

+
~N N

2. ~
+ 7A(t)+Y(t),

8f 8 f
30+ 1 f)

me(t)=m(0)+ M3

2 2 2 3"’ KV,
m2(t)=m2(0) + M2 +58m-2(),

(3.32

3f 3 f
> 2(t)+ﬂ) 1(t)

where
A=[3(0)—A(0)2]H(t,yo) +{A(0)+ 7TMgy,[tf(1)
R df
—F(D)1}2H(t,y0)?— 7y0M(2)H 7(t,yo)tza— 3.(0)

+{m,(0)2[T(1)2H(t,y0) Y= 11— Tyo[Al(0)

—my(0)1%Q) 7.6 (t) + 14m,,(0)[A(0) —m,,(0)]

Yo,

(3.39

tf(t t df
At(t)~|v|0( © )

Fo D dt
In the large taB case, we have from E¢3.24) that for large

tang, y~f(t)/(7F(t)), and from Eq.(3.29

=

_ O(w_;&w_;d_g_z)

F(t)y f(r)dt G(t) g(t) dt
Ab%MO({fﬂ_;ﬁ_w+;@)_
F(t) f(r)dt G(t) g(t) dt

(3.39

Since the only difference betwedrand f, and correspond-
ingly F andF, is the replacement o} by C'*, and since
we haveg(t)~1 andG(t)~t, we see that the QIRFP pre-
dictions forA; andA,, for large tang are in fact close to the
small tanB prediction forA;. To be more explicit, for small
tanB we find
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Al(Mz) m>
MS(MZ) %_0'6' (337) M3(—|\;|Z)2%0.47’ (342@

with less than a 1% difference in the large farase for ;. broad agreement with Re 13]. At large tang:
A(M5)/Ms(M5) or Ay(M,)/Ms(M5), in agreement with g 5], [13]. At large tang:

Refs.[6], [9], [13]. 2 2

mg—m-

Turning to the soft masses, we find that for small fan Q—‘2~0.05, (3.433
and largey, M3(Mz)
A2 (tf—F)% t>df S0 a3 2m3+m2

—~Wo T_Ea —2(0). ( . 8) WNO.SL (3.43b

with a similar equation foA in the large tar case, but with ~ which do not seem to appear explicitly in the literature, al-
f—1, F—F (after settingA,~A,, A,~A,), so thatA de- though it is easy to see that, for example, they are implied by
pends on the initial values of the soft masses throng). ~ =9S-(20—~(23) of Ref. [9]. Note also that, writing

In the standard case where the superpotential (Bd)

_ 2 2
contains also a term, but the soft terms are given only by AgMZ) ~ (tf ZF) v ﬁ &)22
Eq. (3.2), the resulting QIRFP pattern has been discussed by M3(Mz) F Fdt]], Mg

. . . Z
previous authors. As mentioned earlier, we can reproduce

this case by settingn,= A Ab At p and m1 2—>m12 %_0.94_0_12&;) (3.44)
+ n2. However, for ease of of presentation we start by analyz- Mg

ing the casem,= A Ab At 0; but it is straightforward
to check that our results are still valid when we include the
supersymmetrigc term as above. The most robust prediction
is easily seen to be th&t small targ)

then as long a& (0)/M3<7 then the dependence &0)
of this ratio is suppressed. The result is further QIRFP be-
havior, for alimited range of boundary conditions &t for
the soft massef8]; we will not discuss this possibility fur-
3 (M) (tf—F)2 d [t2df| t2df ther, however.
M (M )2~ [ = + &(? a) - Ea} As we pointed out before, the above predictions remain
sz Mz valid when the nonholomorphic terms simply reproduce the
(339 supersymmetrig:-term. Let us turn now to examine the ex-
tent to which they survive the introduction of completely
general nonholomorphic terms; first in the small gacase.
ap |2 We see thatr(t) in Eq. (3.23 still depends orm,(0) and
= (m) (3.40 A:(0) asy,—oe, and this dependence in fact grows wyt,
since the integrand 00(6 3;2) develops a pole at=0 as
and we have used Yo—; similarly for m1 Clearly, however, sinc® is inde-
5 pendent ofY, the results Eq93.39 and(3.41) survive in the
D _tf:ﬂ(t_ ﬁ) general case, but not E(B.423.
i f dt For large tarB, we find that forY in Eq. (3.34 we have
Y, 2 2 2 2
There is an analogous expression for largegaBo we see Y= 2/7m¢(0)2 asyo—. %, mg—m; and mg+m; are,

that for largey,, S is independent of the initial values of the however, independent &f so we obtain
soft masses. The result

where

3 (My) [0.75 small tar8 W%OJG (3.45

—_—~ 3.4)
M,(M,)2 | 0.76 large ta (
3(M2) g B for arbitrary initial scalar masses, and
(note the negligible difference between the large and small

2 2
tang casesis in agreement with Ref$6], [13]. Mo —my _
If we assume a universal scalanasg?, mﬁ, atM then it M3(My)? ~0.05,
is easy to see that there are similar fixed points for the fol-
lowing quantities. At small tag: 2mé+ m3
————~0.81, (3.46
32 M3(M)
Q 2
——=~0.28, (3.42a )
M3(Mz) for a universal scalaimass-. The fact that the latter QIRFPS
are valid even for non- supersymmetm AT, Ab, andAI
m2+2m3
1 2__ 075 (3.421 is rather remarkable. It is clear from E¢3.27) that this
M3(Mz) ' happens because in the ligg—c, m,,, A, - all approach
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12 T T T T T 1

:
ii

2 4 4

i . , s ; s s X . . s .

0 ! t=1/(zn)3|n(MU/p) 5 6 0 ! t=1/(2n)3ln(MU/u) 8 6

FIG. 1. A plot of A+ A, againstt=(1/27)In(My/u) for FIG. 2. A plot of A, againstt=(1/27)In(My/x) for tanp
tanp~1.7, with 4,(My)=A(My)=1, and with Z<A(My) ~1.7, with 4,(My) =A(My) =1, and with 2< A (My)=<11.

<11.

we already remarked, in faaot,(t)—0 asy,—, it follows
that we would needn,, to be large atM . Therefore we
cannot simultaneously have good fixed point convergence

zero. In Ref[2] we argued that in the presence of the non-
holomorphic soft terms it might be that there was no explicit

supersymmetrig: term, and we explicitly demonstrated that I n2 ) , :
there were regions of parameter space corresponding to a(ﬂr them”/ M fixed points and thet fixed point, Eq.(3.47),

acceptable electroweak vacuum. Unfortunately this scenarignd have the latter have experimental consequences. An ex-
cannot be implemented here, since usingg=m3 we obtain ~ ception is Eq.(3.433, sinceboth A and Y cancel in this

at once(using the tree minimisation conditions in the ab- COmbination, as is easily seen from Eg.32).

sence of au term) that mi~m3~ —1/2M3 which violates In the large tarB case, we see that if we havé(0)

the well known requirement than?+m2>|m2|. The new —-b(0) then there is a QIRFP=A,=1, while A; actu-

parameters themselves do exhibit QIRFP behavior if we con"ZlIIy grows for largey,, unless

sider ratios OfKt,b,T to m,. Starting with the small tag
case, we see that whild,, A, and.A, have no individual 54(0)+ A(0)—4A4.(0)=2 3.4
QIRFP, we havdasy,— =) AL+ A(0) = 44:(0)=2. (348

At Ap~2. (3.47) This behavior reflects the fact that the stability matrix for the

evolution of 4;, Ay, andA,, given in Ref.[2], has at least

As pointed out in Ref[2] and clearly manifested in Egs. X . TS
one negative eigenvalue in this case.

(3.13, the ratios ofA;, . to m, have true infrared fixed
points (i.e., ast—x) of 1, corresponding to the supersym-
metric limit, and sa4;+ Ay has an infrared fixed point of 2.
The point is that the QIRFP behavior occurs for firitather
than fort—. In Fig. 1 we show the approach to the QIRFP In this paper we have continued the study of the RG evo-
for A+ Ay, for tang close to the QIRFP value. There is clear lution of “nonholomorphic” soft terms that we began in
convergence towards the QIRFP although this convergendgef. [2]. In a special class of theories, we have shown the
is somewhat slowed by the powerof H(t,y,) in Eq. existence of a relation between theand m'@ terms that is
(3.130. This means that to see significant convergence wé&kG invariant.
need to be at or beyond the limit of perturbative believability ~We have also explored the infrared behavior of these soft
for y (though in Ref[12] we argued using Paeorel sum-  terms in the MSSM. Of course, in general we simply have a
mation techniques that the domain of attraction of the QIRFAnuch enlarged parameter space, so we have restricted our
could be extended beyond the naive perturbative region attention to the two cases when either the top-quark Yukawa
In Fig. 2 we show the contrasting behavior of the indi-is close to its quasi-infrared fixed poiitorresponding to
vidual ratio.4;, which clearly has no QIRFP; the approach to small tang) or when the top and bottom Yukawas are equal
the fixed point valued,=1 is much slower than the ap- and close to a quasi-infrared fixed poi@orresponding to
proach to the QIRFP in Fig. 1. Of course for the predictionlarge tang).
Eq.(3.47 to have experimental relevance we would need We have shown thafor small tang) we obtain the pre-
to be non-negligible aul ; : otherwise, the associated contri- dictions atM, (independent of the boundary conditions at
butions to the squark mass matrices would be small. Since a4 )

IV. SUMMARY
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mé+ m2+ mé~0.75\3 (4.1  cation, which includes the usual “universal” case, this focus
! point of the RG trajectories occurs fmn% and at a value
A~—0.6M5 (4.1b close to the weak scalgor a range of moderate values of
tanp). We note that, in contrast to the QIRFP case, focussing
A+ A,~2m (4.10 is not c_iriven by the behavior of the Yukawa couplings at
v unification.

where Eq(4.10 certainly holds but for Eqg4.13, (4.1b) to
hold it would have to be than,<Ms;.

For large tarB Eq. (4.1) again holdgwith the same quali- ACKNOWLEDGMENTS
ficzation), but in addition we also havéf there is a universal This work was supported in part by the Leverhulme Trust;
mg at My) and part of it was done at the U.K. Theory Institute at

Swansea. One of ug.J) thanks Marcela Carena for a con-
versation, and in particular for drawing to our attention the
treatment of the large tgk case from Ref[9].

mg— mz=~0.05M3(M7)?,
2m+m5~0.81IM3(M)?. (4.2)

Finally we note that recently an interes_ting phenomenon APPENDIX
termed “focussing” has been noticéd5]; this also confers
a substantial measure of predictivity on the values of certain In this appendix we list the results for the two-logp
soft masses. In focussing, the value of some soft mass atfanctions forr!*, m2, b/, and (m?)';, with mg set to zero.
particular scale is independent of the soft mass scale at uniThe two-loop functions forM and h'’* may be found in
fication. For a certain class of boundary conditions at unifi-Refs.[16,17].) We find

(16%)2(B?)]“= = 2g2YP!Y;5nC(R) "= 2g2YIPY o FRMC(R)T = 2Y1™Y i1 YooY P T 29 TR C(R)?™
—2g°[C(R?I' T = 4g*ThiC(R)\C(R)™ — 207 Yiin Y™ °C(R) = 27T Y 1np Y¥C(R)P,
=YY YPTY o TP YIMY G YRPY AT 2y IRaY | YRIMY TR - 3g2YIRY L FIC(R)P,

= 2g7YIMYTRPC(R) 5+ 4g7Y!™ (Ra) "} YingT h(Ra) g+ 20T 1" C(R) i Y9

—2g2Y Y, "P(Ra)(Ra)' mt 49 ][ C(R)*]im+ B *Flr(RaRy) " (RaRo)'
—4g"C(G)F(Ra) " (Ra) i = T YimpY P9+ ZF Y1 VP — 29%C(G)THI(Ra)g(Ra)

=47 (Ra) T H"PT(Ra) s =1 ViV PP, = Y YIFPPL — 2g7F) [C(R)P T — g%F[[C(R)PT
=2V PITRP = 2V FREPP = 2V, PYUTP— g QF“C(R) i+ 29" QT C(R)

- %‘rf’kv'm”YimpPpwﬂg{6g4C<G>Q<Ra>iimik— 4g°Tr P RyRo](Ry)imi— 29°C(G) (P (Ry)"
= (Ra)Yim VKPP mi} + ok, (A1)

(167°)%(B) = = 2g*TH PRRo MR — Y Yy P MR* = 2V2g Y'Yy Ra) "pT P+ 29°C(G)[29°QM — (P!

—v2g(R) T, (A2)
wherePij andQ are as defined in Eq2.6), and
Tl =rl*=v2g[ (Ry)|imi+ (Ry)mi]. (A3)

Clearly, on the RG trajectory given by E®.13 (now with u=0) (ﬂﬁﬁz)a‘ and especially 8{?))% simplify considerably, and
satisfy Eq.(2.14). We further find
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(1672)2( B2 = —b'Y | Y"PIP — 2g?C(R)! VX +2g*b'*C(R)}Q+8g*C(G)[ T(R) — 2C(G) Im2mj2
—4g%(RyRa)  YMY nmAdmiP+ 2g%C(G) YR umigm 2= 2YKNY o h™PI— Y YinPr Mr
= 2Y"Y gl Pr = 20 K P A 27 C(R) wr (= CRM i Ir k™ = YR XMy rf = 20K P™y ) sk,
(A4)
1

(167)%(B2)' = 5 YinmY"™(M2)P 4 Y5 Y (m?)', + by b1

—[(mz)'-Y Yyt Ly, YP(m?)!+
j 'Imn 2 jlm n

) ) ) ) 1 )
+492MM*C(R)',6° + 29%(Ry)'j(Ram?)P, [P+ [2g°M* C(R)P; 8" ,— hjj, Y'P X" — E[YJ-mY"P

+2g%C(R)P; &', ]W",+ 129*MM* C(R)';Q+4g*SCR)'; + 2Y™ MY [ P+ g2C(R) ™, JMp ey
+497(RoRy)' MaaP MR — 49%(RoRaP)' | MaamR + 4Y ™Y MAP) MR ™ 2G°C(G) Y'Y j M qmi™
+89°Q(RyRy)'jMa My’ +49°C(G) (RyRa)'jMaraMy’ + 4g*C(G)[2Q +3C(G) Imgmaj
+2g2YMC(R)™ Y ymiMaiaMa’— 89*(RaRp)' jMacRaRpMA +2Q @Y Yy M ama™

+892(RaRp) Y jim Y M npma 2+ 892(Ra)iijlm(Ykln(mAloRa)nmRer (Ra)InYnkpmApmeb)
+49%(Ra) (Ra)'}Yimn Y ™ Map A+ 4v2G (1Y jmn( Ra) "Y' ™PMapat 20%(RaRy) ' ' (MapRa)1)

= 2YMY o = Y ke Y P = 2Y MY P = 402C(R) o Kl — 202 C(R) ™y

—CRINN™N = 49%(Ra) (R ™ar K = ' P =1 r | PM— 1P |+ Ho., (A5)

where VI, W', and X'; are as defined in Eqg2.11h,  fortiori, we see that the same conditions which imply one-
(2.110, (2.12 but with mz=0, and where loop finiteness also guarantee two-loop finiteness, as was dis-
covered in the case of the standard soft couplings in Ref.
—(m2\i i * [16]. Although we have presented two-loop results for the
S%ap=(M)'j(RaRy)j =MM*C(G) dap. (A) casem:=0, we have checked that fon-= u, the relations

) ) Egs. (2.13, (2.15 and (2.17 continue to be RG-
The form of Egs(A4) and(A5) on the RG trajectory is less jnyariant—in other words, the relations E(@.19 are RG

clear than in the case of Eq#1) and(A2), but nevertheless jnvariant in a theory with a supersymmeticterm together
after some work we find that Eq&2.16 and(2.18 are sat-  with Ly as in EqQ.(2.2), and withme=0 in Eq. (1.2). As
isfied at this ordefwith x=0). [In the case of EQ(A5), we  explained earlier, this is a consequence of the fact that cou-
are again obliged to specialize to theories for which the matplings satisfying Eqs(2.19 follow from the single holomor-

ter multiplet satisfie<C(R)';=C(G)¢';, as at one loop.A  phic term Eq.(2.20.
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