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Quasi-infrared fixed points and renormalization group invariant trajectories for nonholomorphic
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In the MSSM the quasi-infrared fixed point for the top-quark Yukawa coupling gives rise to specific
predictions for the soft-breaking parameters. We discuss the extent to which these predictions are modified by
the introduction of additional ‘‘nonholomorphic’’ soft-breaking terms. We also show that in a specific class of
theories, there exists an RG-invariant trajectory for the ‘‘nonholomorphic’’ terms, which can be understood
using a holomorphic spurion term.

PACS number~s!: 12.60.Jv, 11.10.Gh
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I. INTRODUCTION

The enduring popularity of the minimal supersymmet
standard model~MSSM! derives originally from the demon
stration that it gave rise to gauge coupling unification, a
scale consistent with proton decay limits~at least with regard
to contributions from dimension 6 operators!. This success is
predicated on~or at least consistent with! the desert hypoth-
esis, whereby the next fundamental physics scale beyond
weak scale is far beyond it: gauge unification, a string sc
or even the Planck mass. Within this context, a ‘‘standar
picture of the origin of supersymmetry breaking h
emerged: supersymmetry is broken~dynamically or sponta-
neously! in a distinct sector of the theory and transmitted
observable physics via a ‘‘messenger sector.’’ At energ
below a characteristic mass scaleM the observable effective
field theory can be expanded in powers of 1/M ; then we
suppose that the breaking of supersymmetry can be para
trised by the vacuum expectation value of theF term of a
chiral superfieldZ, such that̂ FZ&'MZM , and it is easy to
show that the following soft terms areO(MZ):

Lsoft
~1!5~m2! j

if
if j1S 1

6
hi jkf if jfk

1
1

2
bi j f if j1

1

2
Mll1H.c.D , ~1.1!

whereas the following further possible dimension 3 terms
suppressed by powers ofMZ /M :

Lsoft
~2!5

1

2
r i

jkf if jfk1
1

2
mF

i j c ic j1mA
iac ila1H.c. ~1.2!

The terms in Eq.~1.2! arise from nonholomorphic terms~D
terms! in the effective field theory, so we will refer to them
as nonholomorphic soft terms@an abuse of terminology, in
fact, inasmuch as of course the first term in Eq.~1.1! also
arises from a nonholomorphic term#.

In fact, if there are no gauge singlets, the terms in E
~1.2! are ‘‘natural’’ in the same sense as those of Eq.~1.1!, in
that they do not give rise to quadratic divergences; but in
event~within the paradigm described above! one would not
exclude them even if they do give quadratic divergenc
0556-2821/2000/61~9!/095002~12!/$15.00 61 0950
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since we only require naturalness up to the scaleM. This was
emphasised recently by Martin@1#, who also pointed out tha
by the same token there are dimension-4 supersymme
breaking contributions which~although suppressed by mor
powers of 1/M ! may give rise to interesting effects.

Returning to the terms shown in Eq.~1.2!, however, there
are two reasons why we should consider them. First, th
suppression compared to Eq.~1.1! is founded on a specific
framework for the origin of supersymmetry breaking whi
may or may not be true; secondly, even given the fram
work, the recent model-building trend has been away fr
the desert hypothesis: for example, in the suggestion
~very! large extra dimensions. It is not clear to us whether
such theories the suppression of Eq.~1.2! relative to Eq.
~1.1! will necessarily be sustained. Be that as it may,
believe that there is a case for an agnostic approach
supersymmetry-breaking whereby all dimension 2 and
mension 3 terms are considered without prejudice, in th
ries where they do not cause quadratic divergences.

In a previous paper@2# we gave the one-loopb functions
for the parameters defined in Eq.~1.2!, both in general and in
the MSSM context. In this paper we extend the general
sults to two loops. We find~and verify through two loops! a
renormalization-group-~RG!-invariant relation which can be
imposed betweenr, b, m2, andmA . We also investigate the
consequences of Yukawa infrared~and quasi-infra-red! fixed
point structure for the MSSM, where we find that some~but
not all! of the predictions founded on the MSSM survive
the presence of the nonholomorphic terms.

II. THE b FUNCTIONS

We begin with the one-loopb functions for a theory with

L5LSUSY1Lsoft, ~2.1!

where

Lsoft5Lsoft
~1!1Lsoft

~2! , ~2.2!

and whereLSUSY is the Lagrangian for the supersymmetr
gauge theory, containing the gauge multiplet$Am ,l% ~l be-
ing the gaugino! and a chiral superfieldF i with component
fields $f i ,c i% transforming as a~in general reducible! rep-
resentationR of the gauge groupG. ~We give results here for
©2000 The American Physical Society02-1
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a simple gauge group, though the extension to a nonsim
gauge group is straightforward.! We assume a superpotenti
of the form

W5
1

6
Yi jkf if jfk . ~2.3!

Note that we do not include an explicit supersymmetricm
term in W; the usual theory containing onlyLsoft

(1) together
with a supersymmetricm term can be recovered by taking
Lsoft

(2)

mA
ia50, mF5m, r i

jk5Yjklm i l ~2.4!

and replacing (m2) i
j in Lsoft

(1) by (m2) i
j1m i l m j l .

The one-loop results for the gauge couplingb functionbg
and for the chiral field anomalous dimensiong are

16p2bg5g3Q and 16p2g i
j5Pi

j , ~2.5!

where

Q5T~R!23C~G! and Pi
j5

1

2
YiklYjkl22g2C~R! i

j .

~2.6!

Here

T~R!dab5Tr~RaRb!, C~G!dab5 f acdf bcd , and

C~R! i
j5~RaRa! i

j , ~2.7!

and as usualYi jk* 5Yi jk , etc. For the new soft terms from Eq
~1.2! we have@2#

16p2bmFi j
5Pk

imFk j1Pk
jmFik , ~2.8a!

16p2bmAia
5Pj

imA ja1g2QmAia , ~2.8b!

and

16p2~b r ! i
jk5

1

2
Pl

i r l
jk1Pk

lr i
j l 1

1

2
r i

mnYlmnY
l jk

12r l
m jYimnY

kln12g2r l
jkC~R! l

i

12g2r l
m j~Ra!k

i~Ra! l
m22mFlmYmn jYplkYnpi

24g2mFil C~R! l
mYm jk

24g&@g2C~G!mA
ja~Ra!k

i

1~Ra! j
lY

lmkYmnimA
na#1~k↔ j !. ~2.9!

For the original soft terms in Eq.~1.1! we have

16p2bh
i jk5Ui jk1Uki j1U jki , ~2.10a!

16p2bb
i j 5Vi j 1Vji , ~2.10b!

16p2@bm2# i
j5Wi

j , ~2.10c!
09500
le 16p2bM52g2QM, ~2.10d!

where

Ui jk5hi j l Pk
l1Yi jl Xk

l , ~2.11a!

Vi j 5bil Pj
l1r lm

i hjlm1r l
imr m

jl 2mFklY
ilmmFmnY

jnk

14g2MmF
ikC~R! j

k24g2C~G!mA
iamA

ja , ~2.11b!

Wi
j5

1

2
YjpqYpqn~m2! i

n1
1

2
YipqYpqn~m2!n

j

12YipqYjpr~m2!r
q1hjpqhipq1r j

klr kl
i 12r j l

k r k
il

24~mF
klmFlm1mAmamA

ka!YimnYjkn

28g2@MM* C~R! i
j1mF

klmF jkC~R! i
l1C~G!mA

iamA ja

1~RaRb! i
jmAkamA

kb#24&g@YimlmFmn~Ra!n
jmAla

1YjmlmF
mn~Ra! i

nmA
la# ~2.11c!

with

Xi
j5hiklYjkl14g2MC~R! i

j . ~2.12!

Note that we have omitted from Eq.~2.10c! a contribution of
the formg2(Ra) i

jTr@Ram2#. This term arises only forU(1)
and amounts to a renormalization of the linearD term that is
allowed in that case. The two-loopb functions are listed in
the Appendix~for the casemF50!.

There has been much interest recently in RG-invari
relations expressing the usual soft couplingsM, hi jk , and
(m2) i

j in terms of theb functions for the unbroken theory. In
Refs.@3# these relations were derived from the superconf
mal anomaly, while in Ref.@4# they were derived using exac
results for the soft-breakingb functions obtained using the
spurion formalism. From the latter point of view, the
would seem noa priori reason to expect such RG-invaria
results for the new nonstandard couplings. The reason
this is that the spurion formalism enables us to relate
renormalization of the standard soft termsM, hi jk , and
(m2) i

j to the anomalous dimensiong of the chiral superfield.
This does not carry over to, for example, the case ofr i

jk

because the corresponding superspace interaction isF2F*
which is nonrenormalizable and hence leads to divergen
beyond those described byg. It is ~at first sight! surprising,
therefore, that it is in fact possible to develop RG-invaria
expressions for the nonstandard couplings. We start by w
ing mF5m in Eqs.~2.8!–~2.11!, since, as we shall explain in
more detail later,mF will effectively be playing the roˆle of a
supersymmetricm term. Then first, the relation

r i
jk5&g@~Ra! j

imA
ka1~Ra!k

imA
ja#1Yjklm i l ~2.13!

defines a renormalization-group trajectory forr i
jk . If we im-

pose Eq.~2.13! in Eq. ~2.9!, we find
2-2
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~b r ! i
jk5&bg@~Ra! j

imA
ka1~Ra!k

imA
ja#1&g@~Ra! j

ibmA

ka

1~Ra!k
ibmA

ja #1bY
jklm i l 1Yjklbm i l . ~2.14!

This clearly implies that Eq.~2.13! is RG invariant. Now
suppose that in the usual theory, with a supersymmetrim
term and only the soft terms contained inLsoft

(1) , we have
solved the RG equations, with the functions (ms

2) i
j and bs

i j

being the solutions for (m2) i
j and bi j . If we additionally

impose

bi j 5bs
i j 12mA

aimA
a j , ~2.15!

we find, on imposing Eq.~2.15! in Eq. ~2.10b!,

bb
i j 5m

d

dm
bs

i j 12bmA

ai mA
a j12mA

aibmA

a j , ~2.16!

which implies that Eq.~2.15! is RG invariant. Finally, if we
set

mAiamA ja5rd i
j , ~m2! i

j5~ms
2! i

j1m ikmk j12rd i
j ,
~2.17!

where r is an arbitrary constant, and the matter multip
satisfiesC(R) i

j5C(G)d i
j , then we find on substituting Eq

~2.17! into Eq. ~2.10c! that

~bm2! i
j5m

d

dm
~ms

2! i
j1bm

ikmk j1m ikbmk j

12bmA

ai mAa j12mA
aibmAa j , ~2.18!

demonstrating the RG invariance of Eq.~2.17!. Note that
here we are including a supersymmetricm term. To be more
explicit, another way to phrase our results is to say that
theory with W5 1

6 Yi jkf if jfk1 1
2 m i j f if j , together with

Lsoft as in Eq.~2.2!, but takingmF50 in Eq. ~1.2!, the rela-
tions

r i
jk5&g@~Ra! j

imA
ka1~Ra!k

imA
ja#, ~2.19a!

bi j 5bs
i j 12mA

aimA
a j , ~2.19b!

mAiamA ja5rd i
j , ~m2! i

j5~ms
2! i

j12rd i
j ~2.19c!

are RG invariant@once again with the proviso that the matt
multiplet satisfiesC(R) i

j5C(G)d i
j in the case of Eq.

~2.19c!#. Using the two-loop results given in the Appendi
we can show that the trajectory is also RG invariant at tw
loop order. In the special case of a one-loop finite the
~and settingm50! the above trajectory was described in R
@2#.

The existence of the RG trajectory described by E
~2.19! can in fact be understood using spurions~we are most
grateful to the referee for pointing out the following arg
ment!. Consider the term

Lsoft5&mAE uaWa
aFad2u1c.c., ~2.20!
09500
t

a

-
y
.

.

whereFa(f,c,F) is a chiral superfield in the adjoint repre
sentation and

Wa
a5la

a2Daua1¯ ~2.21!

is the usual superspace gauge field strength. In the W
Zumino gauge this reduces to

Lsoft5mA~laca1c.c.!2&mADa~fa1f* a!. ~2.22!

When the auxiliary fieldD is eliminated this produces th
following contributions to the Lagrangian

L5mA~laca1c.c.!1
1

2
@gf* Raf1&mA~fa1f* a!#2

~2.23!

which, it is easy to see, precisely accounts for all the term
Eq. ~2.19!. The fact that we were forced to place the chir
superfield in the adjoint representation to obtain an RG
variant trajectory is now simply understood in that for such
field we can obtain all our ‘‘nonholomorphic’’ soft breaking
from a singleholomorphicterm, Eq.~2.20!. Moreover, the
fact that it is holomorphic means that we can immediat
apply the nonrenormalization theorem to show that~on the
trajectory!

bmA
5 S bg

g
1g DmA . ~2.24!

It is easy to verify this result through two loops using Eq
~2.8b!, ~A2!.

III. THE MSSM

Retaining only the third generation Yukawa couplings w
have the superpotential

W5l tH2Qt̄1lbH1Qb̄1ltH1L t̄, ~3.1!

and soft breaking terms

Lsoft
~1!5(

f
mf

2 f* f1Fm3
2H1H21(

i 51

3
1

2
Mil il i1H.c.G

1@Atl tH2Qt̄1AblbH1Qb̄1AtltH1L t̄1H.c.#

~3.2!

and

Lsoft
~2!5mccH1

cH2
1Ātl tH1* Qt̄1ĀblbH2* Qb̄

1ĀtltH2* L t̄1H.c. ~3.3!

If we setmc5Āt5Āb5Āt5m andm1,2
2 →m1,2

2 1m2 then we
recover the MSSM.~A note on notation: in our previous
paper @2# we followed Inoue et al. @5#, who used mc

5m4 ,Āt5m5 ,Āb5m7 ,Āt5m9 , and correspondinglyAt
5m6 , Ab5m8 , andAt5m10.! As in Eq. ~3.1! we assume
third generation dominance here~this may not be true, of
2-3
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course!. In fact we neglect all mixing between the gener
tions and all couplings associated with the first two gene
tions throughout; for the generalisation to include these~in
the absence of our nonholomorphic terms! in the quasi-fixed-
point context, see Ref.@6#.

The supersymmetric couplings evolve according to
well-known equations

da i

dt
52bia i

2, ~ i 51,2,3! ~3.4a!

dyt

dt
52ytS 6yt1yb2(

i
Ci

ta i D , ~3.4b!

dyb

dt
52ybS 6yb1yt1yt2(

i
Ci

ba i D , ~3.4c!

dyt

dt
52ytS 4yt13yb2(

i
Ci

ta i D , ~3.4d!

wheret52(1/2p)ln m,

a i5
gi

2

4p
, yt5

l t
2

4p
, etc., ~3.5!

and

bi5S 33

5
,1,23D , Ci

t5S 13

15
,3,

16

3 D ,

Ci
b5S 7

15
,3,

16

3 D , Ci
t5S 9

5
,3,0D , i 51,2,3. ~3.6!

It is straightforward to show from our results that

dmc

dt
52

1

2 S yt13yb13yt22(
i

Ci
Ha i Dmc , ~3.7a!

dĀt

dt
52

1

2
~yt23yb13yt!Āt23ybĀb

1~2mc2Āt!(
i

Ci
Ha i , ~3.7b!

dĀb

dt
52

1

2
~3yb15yt2yt!Āb2Ātyt1yt~2mc2Āt!

1~2mc2Āb!(
i

Ci
Ha i , ~3.7c!

dĀt

dt
52

1

2
~yt15yb13yt!Āt1yb~2mc2Āb!

1~2mc2Āt!(
i

Ci
Ha i , ~3.7d!
09500
-
-

e

dAt

dt
524ytAt23ybAb2(

i
Ci

ta iM i , ~3.7e!

dAb

dt
52ytAt26ybAb2ytAt2(

i
Ci

ba iM i , ~3.7f!

dAt

dt
52ybAb26ytAt2(

i
Ci

ta iM i , ~3.7g!

dm1
2

dt
52yt~m1

21At
21mL

21mt̄
2!23yb~m1

21Ab
21mQ

2 1m
b̄

2
!

23ytĀt
212 (

i
Ci

Ha i~mc
21Mi

2!, ~3.7h!

dm2
2

dt
523yt~m2

21At
21mQ

2 1m
t̄

2
!2ytĀt

223ybĀb
2

12 (
i

Ci
Ha i~mc

21Mi
2!, ~3.7i!

dm3
2

dt
52

1

2
~yt13yb13yt!m3

22ytĀtAt23ybĀbAb

23ytĀtAt1
1

2 (
i

Ci
Ha i~m3

222Mimc!, ~3.7j!

dmQ
2

dt
52Xb2Xt12 (

i
Ci

Qa iM i
2, ~3.7k!

dm
t̄

2

dt
522Xt12 (

i
Ci

t̄a iM i
2, ~3.7l!

dm
b̄

2

dt
522Xb12 (

i
Ci

b̄a iM i
2, ~3.7m!

dmL
2

dt
52Xt12 (

i
Ci

Ha iM i
2, ~3.7n!

dmt̄
2

dt
522Xt12 (

i
Ci

t̄a iM i
2, ~3.7o!

dMi

dt
52biM ia i , ~3.7p!

where

CQ5S 1

30
,
3

2
,
8

3D , Ct̄5S 8

15
,0,

8

3D , Cb̄5S 2

15
,0,

8

3D ,

Ct̄5S 6

5
,0,0D , Ci

H5S 3

10
,
3

2
,0D , i 51,2,3, ~3.8!

and where
2-4
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Xt5yt~mQ
2 1m

t̄

2
1m2

21Āt
21At

222mc
2 !,

Xb5yb~mQ
2 1m

b̄

2
1m1

21Āb
21Ab

222mc
2 !,

Xt5yt~mL
21mt̄

21m1
21Āt

21At
222mc

2 !. ~3.9!

A. The small tanb region

In the small tanb region where we takeyb5yt50, Eqs.
~3.4a!, ~3.4b! are easily solved to give

a i~ t !5
a0

11bia0t
, ~3.10a!

yt~ t !5y0f ~ t !H6~ t,y0!, ~3.10b!

where

f ~ t !5)
i

@11bia0t#Ci
t/bi, ~3.11!

and

H6~ t,y0!5
1

116y0F~ t !
, F~ t !5E

0

t

f ~t!dt ~3.12!

and wherey05yt(0) and we assume a common initial gau
couplinga i(0)5a0 at a unification scaleMU . We then eas-
ily solve Eqs.~3.7a!–~3.7d! to give

mc~ t !5H6~ t,y0!1/4f̃ ~ t !mc~0!, ~3.13a!

At~ t !511 f̃ ~ t !22@At~0!21#, ~3.13b!

Ab~ t !511H6~ t,y0!1/6f̃ ~ t !22@At~0!1Ab~0!22#

1 f̃ ~ t !22@12At~0!#, ~3.13c!

At~ t !511 f̃ ~ t !22@At~0!21#, ~3.13d!

where

f̃ ~ t !5)
i

@11bia0t#Ci
H/bi, ~3.14!

and

At5
Āt~ t !

mc~ t !
, Ab5

Āb~ t !

mc~ t !
, At5

Āt~ t !

mc~ t !
. ~3.15!

Using the elementary solution of Eq.~3.7p!,

Mi5
M0

11bia0t
, ~3.16!

where we assume a common initial gaugino massMi(0)
5M0 , we can also solve Eq.~3.7g!, giving
09500
At~ t !5$At~0!16y0M0@ t f ~ t !2F~ t !#%H6~ t,y0!

2M0t
1

f ~ t !

d f

dt
. ~3.17!

It is instructive to note that the boundary condition on t
gaugino masses plays a crucial role in determining the fo
of the solution. Thus if we take instead

Mi~0!5m3/2bia0 , ~3.18!

then we obtain

At5H6FAt~0!1m3/2S 6y02(
i

Ci
ta0D G

1m3/2F(
i

Ci
ta i~ t !26y~ t !G , ~3.19!

which, if we impose the initial conditionAt(0)1m3/2(6y0

2( iCi
ta0)50, is the one-loop form of the conforma

anomaly solution@3,4# for At .
Proceeding with Eq.~3.17!, we can ~with more labor!

solve Eqs.~3.7h!, ~3.7i!, ~3.7k!–~3.7o!, giving

mQ
2 ~ t !5mQ

2 ~0!1M0
2S 8

3
f 3~ t !1

3

2
f 2~ t !1

1

30
f 1~ t ! D

1
1

6
D~ t !1Y~ t !,

m
t̄

2
~ t !5m

t̄

2
~0!1M0

2S 8

3
f 3~ t !1

8

15
f 1~ t ! D1

1

3
D~ t !12Y~ t !,

m
b̄

2
5m

b̄

2
~0!1M0

2S 8

3
f 3~ t !1

2

15
f 1~ t ! D ,

m2
2~ t !5m2

2~0!1M0
2S 3

2
f 2~ t !1

3

10
f 1~ t ! D1

1

2
D~ t !23Y~ t !,

m1
2~ t !5m1

2~0!1M0
2S 3

2
f 2~ t !1

3

10
f 1~ t ! D

1$ f̃ ~ t !2mc~0!212mc~0!@Āt~0!

2mc~0!#%H6~ t,y0!1/21mc~0!

3@mc~0!22Āt~0!#23y0@Āt~0!

2mc~0!#2V~6,3/2!~ t !,

mL
2~ t !5mL

2~0!1M0
2S 3

2
f 2~ t !1

3

10
f 1~ t ! D ,

mt̄
2~ t !5mt̄

2~0!1
6

5
M0

2f 1~ t ! ~3.20!

where
2-5
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f i~ t !5
1

bi
S 12

1

~11bia0t !2D ,

D~ t !5@S~0!2At~0!2#H6~ t,y0!1$At~0!16M0y0@ t f ~ t !

2F~ t !#%2H6~ t,y0!226y0M0
2H6~ t,y0!t2

d f

dt
2S~0!

1$mc~0!2 f̃ ~ t !22mc~0!@mc~0!

2Āt~0!#%H6~ t,y0!1/21$mc~0!@2Āt~0!23mc~0!#

23@Āt~0!2mc~0!#2V~6,1/2!~ t !%H6~ t,y0!, ~3.21!

with S5mQ
2 1m

t̄

2
1m2

2, and where

V~a,n!~ t !5E
0

t

f ~t! f̃ ~t!22Ha~t,y0!ndt ~3.22!

and

Y~ t !52
1

6
$mc~0!2 f̃ 212mc~0!@mc~0!

2Āt~0!#%H6~ t,y0!1/2

1
1

6
mc~0!@3mc~0!22Āt~0!#

2
1

2
y0@Āt~0!2mc~0!#2V~6,3/2!~ t !. ~3.23!

Once again, use of the alternative boundary condition
~3.18! and the corresponding solution forAt(t) leads instead
~with appropriate initial conditions for the masses! to the
conformal anomaly form for them2 terms. This we leave a
an exercise for the reader.

In the special case of the MSSM, explicit solutions for t
soft parameters were written down in Refs.@7#. Recently
Codoban and Kazakov@8# have given an elegant derivatio
using the spurion formalism; their results may be obtained
settingmc5Āt5Āb5Āt50. We note that in the more gen
eral case considered here it is not possible to obtain a sim
closed form form3

2(t). However, this is not a major draw
back since in typical running analyses,m3

2(MZ) is in any
case derived by minimizing the effective potential.

B. The large tanb region

In the large tanb region, if we make the approximatio
@9# yb'yt5y,yt'0, the Yukawa coupling is given to
good approximation by

y~ t !5y0 f̂ ~ t !H7~ t,y0!, ~3.24!

where

f̂ ~ t !5)
i

@11bia0t#Ci
tb/bi, ~3.25!
09500
q.

y

le

with Ctb5( 2
3 ,3,16

3 ), and

H7~ t,y0!5
1

117y0F̂~ t !
, F̂~ t !5E

0

t

f̂ ~t!dt.

~3.26!

Note thatC2,3
tb 5C2,3

t 5C2,3
b while we have chosen to setC1

tb

5 1
2 (C1

t 1C1
b). ~In fact, it makes very little difference if we

instead useCtb5Ct, in which casef 5 f̂ andF5F̂.! We can
then solve Eqs.~3.7a!–~3.7d! to obtain

mc~ t !5H7~ t,y0!3/7f̃ ~ t !mc~0!, ~3.27a!

At~ t !511
1

2
f̃ ~ t !22H7~ t,y0!2/7@At~0!1Ab~0!22#

1
1

2
f̃ ~ t !22@At~0!2Ab~0!#, ~3.27b!

Ab~ t !511
1

2
f̃ ~ t !22H7~ t,y0!2/7@At~0!1Ab~0!22#

2
1

2
f̃ ~ t !22@At~0!2Ab~0!#, ~3.27c!

At~ t !511H7~ t,y0!23/7f̃ ~ t !22FAt~0!1
1

5
At~0!2

4

5
Ab~0!

2
2

5G1
3

10
H7~ t,y0!2/7f̃ ~ t !22@At~0!1Ab~0!22#

2
1

2
f̃ ~ t !22@At~0!2Ab~0!#. ~3.27d!

We also find from Eqs.~3.7f!, ~3.7g! that

At~ t !5H 1

2
@At~0!1Ab~0!#17y0M0@ t f̂ ~ t !2F̂~ t !#J

3H7~ t,y0!2M0t
1

f̂ ~ t !

d f̂

dt
1H 1

2
@At~0!2Ab~0!#

15y0M0@ tg~ t !2G~ t !#J H5~ t,y0!2M0t
1

g~ t !

dg

dt
,

Ab~ t !5H 1

2
@At~0!1Ab~0!#17y0M0@ t f̂ ~ t !2F̂~ t !#J

3H7~ t,y0!2M0t
1

f̂ ~ t !

d f̂

dt
2H 1

2
@At~0!2Ab~0!#

15y0M0@ tg~ t !2G~ t !#J H5~ t,y0!1M0t
1

g~ t !

dg

dt
,

~3.28!
2-6
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where

g5@11b1a0t#c1 /b1, ~3.29!

with 2c15C1
t 2C1

b51/5, and

G5
1

~c11b1!a0
$@11b1a0t#c1 /b11121%,

H5~ t,y0!5
1

115y0F̂~ t !
. ~3.30!

With the further assumptionsĀb(0)'Āt(0), Ab(0)
'At(0), m1

2'm2
2, m

b̄

2
'm

t̄

2
, and usingg(t)'1 and G(t)

't, Eqs.~3.27!, ~3.28! simplify to

mc~ t !5H7~ t,y0!3/7f̃ ~ t !mc~0!, ~3.31a!

At5Ab511 f̃ ~ t !22H7~ t,y0!2/7@At~0!21#,
~3.31b!

At511H7~ t,y0!23/7f̃ ~ t !22FAt~0!2
3

5
At~0!2

2

5G
1

3

5
H7~ t,y0!2/7f̃ ~ t !22@At~0!21#, ~3.31c!

At~ t !5Ab~ t !5$At~0!17y0M0@ t f̂ ~ t !2F̂~ t !#%H7~ t,y0!

2M0t
1

f̂ ~ t !

d f̂

dt
, ~3.31d!

and we find that with these assumptions we can obtain
following explicit solutions for the soft masses

mQ
2 ~ t !5mQ

2 ~0!1M0
2S 8

3
f 3~ t !1

3

2
f 2~ t !1

1

30
f 1~ t ! D

1
2

7
D̃~ t !1Ỹ~ t !,

m
t̄

2
~ t !5m

t̄

2
~0!1M0

2S 8

3
f 3~ t !1

8

15
f 1~ t ! D1

2

7
D̃~ t !1Ỹ~ t !,

m2
2~ t !5m2

2~0!1M0
2S 3

2
f 2~ t !1

3

10
f 1~ t ! D1

3

7
D̃~ t !22Ỹ~ t !,

~3.32!

where

D̃5@S~0!2At~0!2#H7~ t,y0!1$At~0!17M0y0@ t f̂ ~ t !

2F̂~ t !#%2H7~ t,y0!227y0M0
2H7~ t,y0!t2

d f̂

dt
2S~0!

1$mc~0!2@ f̃ ~ t !2H7~ t,y0!21/721#27y0@Āt~0!

2mc~0!#2V̂~7,6/7!~ t !114mc~0!@Āt~0!2mc~0!#
09500
e

3@H7~ t,y0!1/721#%H7~ t,y0!, ~3.33!

with

Ỹ~ t !5
2

7
mc~0!2$12H7~ t,y0!6/7f̃ ~ t !2%. ~3.34!

V̂ is defined likeV in Eq. ~3.22!, except thatf→ f̂ .

C. Quasi-infrared fixed points and sum rules

The possibility that the weak-scale values of various
rameters in the MSSM are governed by quasi-infrared fix
point ~QIRFP! behavior @10# has received a good deal o
attention; see, for example, Refs.@6#, @8#, @9#, @11–14#. In
this scenario, the value of the Yukawa coupling at the we
scale is close to the value corresponding to having a Lan
pole at the unification scale. It follows that this value will b
obtained for a wide range of input Yukawa couplings atMU .
In the small tanb case, for example, we have from E
~3.10b! that when 6y0F(t)@1 thenyt' f (t)/(6F(t)), inde-
pendent ofy0 . Moreover, sinceF(MZ)'18 it follows that
there is a range of perturbatively believable values ofy0 such
that the QIRFP is approached atMZ . ~For a discussion of the
extent to which this scenario is preserved at higher ord
see Ref.@12#.! In what follows we will investigate whethe
this behavior of the Yukawa coupling causes QIRFP beh
ior for the soft parameters, simply by taking the limit of larg
y0 , and examining whether the results are independent of
initial conditions atMZ . Of course whether the range ofy0
corresponding to close approach to any resulting QIRFP
cludes perturbatively believable values will depend on
details of the solution.

Thus from Eq.~3.17! we see that for small tanb and large
y0 ,

At~ t !'M0S t f ~ t !

F~ t !
212

t

f ~ t !

d f

dt D . ~3.35!

In the large tanb case, we have from Eq.~3.24! that for large
tanb, y' f̂ (t)/„7F̂(t)…, and from Eq.~3.28!

At'M0S t f̂ ~ t !

F̂~ t !
2

t

f̂ ~ t !

d f̂

dt
1

tg~ t !

G~ t !
2

t

g~ t !

dg

dt
22D ,

Ab'M0S t f̂ ~ t !

F̂~ t !
2

t

f̂ ~ t !

d f̂

dt
2

tg~ t !

G~ t !
1

t

g~ t !

dg

dt
D .

~3.36!

Since the only difference betweenf and f̂ , and correspond-
ingly F and F̂, is the replacement ofC1

t by C1
tb , and since

we haveg(t)'1 andG(t)'t, we see that the QIRFP pre
dictions forAt andAb for large tanb are in fact close to the
small tanb prediction forAt . To be more explicit, for small
tanb we find
2-7
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At~MZ!

M3~MZ!
'20.6, ~3.37!

with less than a 1% difference in the large tanb case for
At(MZ)/M3(MZ) or Ab(MZ)/M3(MZ), in agreement with
Refs.@6#, @9#, @13#.

Turning to the soft masses, we find that for small tanb
and largey0

D'M0
2S ~ t f 2F !2

F2 2
t2

F

d f

dt D2S~0!. ~3.38!

with a similar equation forD̃ in the large tanb case, but with
f→ f̂ , F→F̂ ~after settingAb'At , Āb'Āt!, so thatD de-
pends on the initial values of the soft masses throughS(0).

In the standard case where the superpotential Eq.~3.1!
contains also am term, but the soft terms are given only b
Eq. ~3.2!, the resulting QIRFP pattern has been discussed
previous authors. As mentioned earlier, we can reprod
this case by settingmc5Āt5Āb5Āt5m and m1,2

2 →m1,2
2

1m2. However, for ease of presentation we start by ana
ing the casemc5Āt5Āb5Āt50; but it is straightforward
to check that our results are still valid when we include
supersymmetricm term as above. The most robust predicti
is easily seen to be that~at small tanb!

S~Mz!

M3~MZ!2 'dF ~ t f 2F !2

F2 1
d

dt S t2

f

d f

dt D2
t2

F

d f

dt GU
MZ

,

~3.39!

where

d5S a0

a3~MZ! D
2

~3.40!

and we have used

(
i

Ci
t f i5

d

f t S t2

f

d f

dt D .

There is an analogous expression for large tanb. So we see
that for largey0 , S is independent of the initial values of th
soft masses. The result

S~MZ!

M3~MZ!2 ' H0.75 small tanb
0.76 large tanb ~3.41!

~note the negligible difference between the large and sm
tanb cases! is in agreement with Refs.@6#, @13#.

If we assume a universal scalar~mass!2, m0
2, atMU then it

is easy to see that there are similar fixed points for the
lowing quantities. At small tanb:

mQ
3 1m2

2

M3~MZ!2 '0.28, ~3.42a!

m1
212m2

2

M3~MZ!2 '20.75, ~3.42b!
09500
y
e

-

e

ll

l-

m
t̄

2

M3~MZ!2 '0.47, ~3.42c!

in broad agreement with Refs.@6#, @13#. At large tanb:

mQ
2 2m

t̄

2

M3~MZ!2 '0.05, ~3.43a!

2mQ
2 1m2

2

M3~MZ!2 '0.81, ~3.43b!

which do not seem to appear explicitly in the literature,
though it is easy to see that, for example, they are implied
Eqs.~20!–~23! of Ref. @9#. Note also that, writing

D~MZ!

M3
2~MZ!

'dF ~ t f 2F !2

F2 2
t2

F

d f

dt GU
MZ

2d
S~0!

M0
2

'20.9420.12
S~0!

M0
2 ~3.44!

then as long asS(0)/M0
2,7 then the dependence onS(0)

of this ratio is suppressed. The result is further QIRFP
havior, for alimited range of boundary conditions atMU for
the soft masses@8#; we will not discuss this possibility fur-
ther, however.

As we pointed out before, the above predictions rem
valid when the nonholomorphic terms simply reproduce
supersymmetricm-term. Let us turn now to examine the ex
tent to which they survive the introduction of complete
general nonholomorphic terms; first in the small tanb case.
We see thatY(t) in Eq. ~3.23! still depends onmc(0) and
Āt(0) asy0→`, and this dependence in fact grows withy0 ,
since the integrand ofV (6,3/2) develops a pole att50 as
y0→`; similarly for m1

2. Clearly, however, sinceS is inde-
pendent ofY, the results Eqs.~3.39! and~3.41! survive in the
general case, but not Eq.~3.42a!.

For large tanb, we find that forỸ in Eq. ~3.34! we have
Ỹ'2/7mc(0)2 as y0→`. S, mQ

2 2mt
2 and 2mQ

2 1m2
2 are,

however, independent ofỸ so we obtain

S~MZ!

M3~MZ!2 '0.76 ~3.45!

for arbitrary initial scalar masses, and

mQ
2 2m

t̄

2

M3~MZ!2 '0.05,

2mQ
2 1m2

2

M3~MZ!2 '0.81, ~3.46!

for a universal scalar~mass!2. The fact that the latter QIRFP
are valid even for non-supersymmetricmc , Āt , Āb , andĀt
is rather remarkable. It is clear from Eq.~3.27! that this
happens because in the limity0→`, mc , Āt,b,t all approach
2-8
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zero. In Ref.@2# we argued that in the presence of the no
holomorphic soft terms it might be that there was no expl
supersymmetricm term, and we explicitly demonstrated th
there were regions of parameter space corresponding t
acceptable electroweak vacuum. Unfortunately this scen
cannot be implemented here, since usingm1

2'm2
2 we obtain

at once~using the tree minimisation conditions in the a
sence of am term! that m1

2'm2
2'21/2MZ

2 which violates
the well known requirement thatm1

21m2
2.um3

2u. The new
parameters themselves do exhibit QIRFP behavior if we c
sider ratios ofĀt,b,t to mc . Starting with the small tanb
case, we see that whileAt , Ab and At have no individual
QIRFP, we have~asy0→`!

At1Ab'2. ~3.47!

As pointed out in Ref.@2# and clearly manifested in Eqs
~3.13!, the ratios ofĀt,b,t to mc have true infrared fixed
points ~i.e., ast→`! of 1, corresponding to the supersym
metric limit, and soAt1Ab has an infrared fixed point of 2
The point is that the QIRFP behavior occurs for finitet rather
than fort→`. In Fig. 1 we show the approach to the QIRF
for At1Ab for tanb close to the QIRFP value. There is cle
convergence towards the QIRFP although this converge
is somewhat slowed by the power1

6 of H7(t,y0) in Eq.
~3.13c!. This means that to see significant convergence
need to be at or beyond the limit of perturbative believabi
for y0 ~though in Ref.@12# we argued using Pade´-Borel sum-
mation techniques that the domain of attraction of the QIR
could be extended beyond the naive perturbative region!.

In Fig. 2 we show the contrasting behavior of the ind
vidual ratioAb which clearly has no QIRFP; the approach
the fixed point valueAb51 is much slower than the ap
proach to the QIRFP in Fig. 1. Of course for the predicti
Eq. ~3.47! to have experimental relevance we would needmc
to be non-negligible atMZ : otherwise, the associated contr
butions to the squark mass matrices would be small. Sinc

FIG. 1. A plot of At1Ab against t5(1/2p)ln(MU /m) for
tanb'1.7, with Ab(MU)5At(MU)51, and with 2<At(MU)
<11.
09500
-
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P
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we already remarked, in factmc(t)→0 asy0→`, it follows
that we would needmc to be large atMU . Therefore we
cannot simultaneously have good fixed point converge
for them2/M3

2 fixed points and theA fixed point, Eq.~3.47!,
and have the latter have experimental consequences. An
ception is Eq.~3.43a!, since both D̃ and Ỹ cancel in this
combination, as is easily seen from Eq.~3.32!.

In the large tanb case, we see that if we haveAt(0)
5Ab(0) then there is a QIRFPAt5Ab51, while At actu-
ally grows for largey0 , unless

5At~0!1At~0!24Ab~0!52. ~3.48!

This behavior reflects the fact that the stability matrix for t
evolution ofAt , Ab , andAt , given in Ref.@2#, has at least
one negative eigenvalue in this case.

IV. SUMMARY

In this paper we have continued the study of the RG e
lution of ‘‘nonholomorphic’’ soft terms that we began i
Ref. @2#. In a special class of theories, we have shown
existence of a relation between ther and mia terms that is
RG invariant.

We have also explored the infrared behavior of these
terms in the MSSM. Of course, in general we simply hav
much enlarged parameter space, so we have restricted
attention to the two cases when either the top-quark Yuka
is close to its quasi-infrared fixed point~corresponding to
small tanb! or when the top and bottom Yukawas are equ
and close to a quasi-infrared fixed point~corresponding to
large tanb).

We have shown that~for small tanb! we obtain the pre-
dictions atMZ ~independent of the boundary conditions
MU!

FIG. 2. A plot of Ab against t5(1/2p)ln(MU /m) for tanb
'1.7, with Ab(MU)5At(MU)51, and with 2<At(MU)<11.
2-9
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mQ
2 1m

t̄

2
1m2

2'0.75M3
2 ~4.1a!

At'20.6M3 ~4.1b!

Āt1Āb'2mc , ~4.1c!

where Eq.~4.1c! certainly holds but for Eqs.~4.1a!, ~4.1b! to
hold it would have to be thatmc!M3 .

For large tanb Eq. ~4.1! again holds~with the same quali-
fication!, but in addition we also have~if there is a universal
m0

2 at MU!

mQ
2 2mt̄ 2'0.05M3~MZ!2,

2mQ
2 1m2

2'0.81M3~MZ!2. ~4.2!

Finally we note that recently an interesting phenomen
termed ‘‘focussing’’ has been noticed@15#; this also confers
a substantial measure of predictivity on the values of cer
soft masses. In focussing, the value of some soft mass
particular scale is independent of the soft mass scale at
fication. For a certain class of boundary conditions at un
09500
n

in
t a
ni-
-

cation, which includes the usual ‘‘universal’’ case, this foc
point of the RG trajectories occurs form2

2 and at a value
close to the weak scale~for a range of moderate values o
tanb!. We note that, in contrast to the QIRFP case, focuss
is not driven by the behavior of the Yukawa couplings
unification.
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APPENDIX

In this appendix we list the results for the two-loopb
functions forr i

jk , mA
ia , bi j , and (m2) i

j , with mF set to zero.
~The two-loopb functions forM and hi jk may be found in
Refs.@16,17#.! We find
~16p2!2~b r
~2!! i

jk522g2YjplYipmC~R!m
nr̃ l

kn22g2YjplYipmr̃ n
kmC~R! l

n22YjlmYilnYmpqY
nprr̃ r

kq22g4r̃ m
jk@C~R!2#m

i

22g4@C~R!2# j
l r̃ i

kl24g4r̃ m
jl C~R!k

lC~R!m
i22g2r̃ m

jl YilnYmnqC~R!k
q22g2r̃ m

jl YlnpYkmnC~R!p
i

2YjklYlmnY
nqrYipr r̃ q

mp2YjlmYilnYknpYmqrr̃ p
qr22YjpqYmnpY

klmYilr r̃ q
nr23g2YjknYlmnr̃ p

lmC~R!p
i

22g2YjlmYiln r̃ m
npC~R!k

p14g2Yjlm~Ra!n
lYinpr̃ m

pq~Ra!k
q12g2r̃ n

lmC~R! j
mYknqYilq

22g2YjkqYnpqr̃ l
mp~Ra!n

i~Ra! l
m14g4r̃ i

jm@C~R!2#k
m18g4r̃ m

jl ~RaRb!m
l~RaRb!k

i

24g4C~G! r̃ m
jl ~Ra!m

l~Ra!k
i2g2@ r̃ n

lmYlmpY
jpq12r̃ m

lqYlnpYjpm22g2C~G! r̃ n
jq#~Ra!q

n~Ra!k
i

24g2~Ra!m
l r̃ n

jmPl
n~Ra!k

i2 r̃ i
j l YlmnY

kmpPn
p2YlmnY

jknr̃ i
mpPp

l 22g2r̃ i
j l @C~R!P#k

l2g2r̃ l
jk@C~R!P# l

i

22YjlmYinpPl
nr̃ m

kp22YjlmYiln r̃ p
nkPp

m22YjlmYiln Pn
pr̃ m

kp2g4Qr̃l
jkC~R! l

i12g4Qr̃i
j l C~R!k

l

2
1

2
r̃ l

jkYlmnYimpP
p

n1&g$6g4C~G!Q~Ra! j
imA

ak24g2Tr@PRaRb#~Rb! j
imA

ak22g2C~G!~PmA
a ! j~Ra!k

i

2~Ra! j
iYlmnY

kmpPn
pmA

al%1 j↔k, ~A1!

~16p2!2~bmA

~2!!ai522g2Tr@PRaRb#mA
ib2YiklYkmnP

m
lmA

na22&gYiklYkmn~Ra!m
pr̃ l

np12g2C~G!@2g2QmA
ia2~PmA

a ! i

2&g~Ra!k
l r̃ k

i l #, ~A2!

wherePi
j andQ are as defined in Eq.~2.6!, and

r̃ i
jk5r i

jk2&g@~Ra! j
imA

ka1~Ra!k
imA

ja#. ~A3!

Clearly, on the RG trajectory given by Eq.~2.13! ~now with m50! (bmA

(2))ai and especially (b r
(2)) i

jk simplify considerably, and

satisfy Eq.~2.14!. We further find
2-10
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~16p2!2~bb
~2!! i j 52bil YlmnY

mp jPn
p22g2C~R! i

kV
k j12g4bikC~R! j

kQ18g4C~G!@T~R!22C~G!#mA
iamA

ja

24g2~RbRa! i
kY
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where Vi j , Wi
j , and Xi

j are as defined in Eqs.~2.11b!,
~2.11c!, ~2.12! but with mF50, and where

Sdab5~m2! i
j~RaRb! i

j2MM* C~G!dab . ~A6!

The form of Eqs.~A4! and~A5! on the RG trajectory is les
clear than in the case of Eqs.~A1! and~A2!, but nevertheless
after some work we find that Eqs.~2.16! and ~2.18! are sat-
isfied at this order~with m50!. @In the case of Eq.~A5!, we
are again obliged to specialize to theories for which the m
ter multiplet satisfiesC(R) i

j5C(G)d i
j , as at one loop.# A
h

ls,

tz

09500
t-

fortiori , we see that the same conditions which imply on
loop finiteness also guarantee two-loop finiteness, as was
covered in the case of the standard soft couplings in R
@16#. Although we have presented two-loop results for t
casemF50, we have checked that formF5m, the relations
Eqs. ~2.13!, ~2.15! and ~2.17! continue to be RG-
invariant—in other words, the relations Eq.~2.19! are RG
invariant in a theory with a supersymmetricm term together
with Lsoft as in Eq.~2.2!, and withmF50 in Eq. ~1.2!. As
explained earlier, this is a consequence of the fact that c
plings satisfying Eqs.~2.19! follow from the single holomor-
phic term Eq.~2.20!.
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