7 research outputs found

    Investigation of Cell Growth and Chlorophyll a Content of the Coccolithophorid Alga Emiliania huxleyi by Using Simple Bench-Top Flow Cytometry

    Get PDF
    The coccolithophorid alga Emiliania huxleyi produces micro-structured calcite particles, which are called coccoliths. Due to their unique and sophisticated structure, coccoliths are highly promising for different industrial applications, such as paper manufacturing, color and lacquer preparation. The mass production of coccoliths requires the evaluation of optimum cultivation conditions. This study investigates the impact of varying irradiance (10-1500 µmol m-² s-1) on growth and chlorophyll a content of two calcifying strains CCMP371 and RCC1216 as well as on the non-calcifying strain RCC1217 (haploid form of RCC1217). The light kinetics contradicts the popular opinion, that E. huxleyi is an extraordinarily light tolerating alga in general. Photoinhibition was already observed at irradiance >500 µmol m-2 s-1 in the case of the calcifying strains. Furthermore, light requirements to grow at maximum growth rate, as well as thresholds towards photoinhibition were considerably different between calcifying and non-calcifying strains. The haplont required significantly higher irradiance to reach maximum µspec (>200 µmol m-2 s-1), while being much more tolerant to towards photoinhibition, which occurred not until 800 µmol m-2 s-1. Furthermore, a novel method was proposed to allow for the estimation of chlorophyll a content from flow cytometry data. By comprising an Advanced Fluorescence Ratio (AFLR), which considers culture heterogeneity, this method enables for simple chlorophyll a estimation also in older cultures of calcifying Emiliania huxleyi, which tend to build agglomerates

    A Microcavity Array-Based 4D Cell Culture Platform

    Get PDF
    (1) Background: We describe a 4D cell culture platform with which we tried to detect and to characterize migration dynamics of single hematopoietic stem cells in polymer film microcavity arrays integrated into a microtiter plate. (2) Methods: The system was set up with CD34-expressing KG-1a cells as a surrogate for hematopoietic stem cells. We then evaluated the system as an artificial hematopoietic stem cell niche model comprised of a co-culture of human hematopoietic stem cells from cord blood (cord blood CD34+ cells, hHSCs) and human mesenchymal stromal cells (hMSCs) from bone marrow over a period of 21 days. We used a software-based cell detection method to count single hematopoietic stem cells (HSCs) in microcavities. (3) Results: It was possible to detect single HSCs and their migration behavior within single microcavities. The HSCs displayed a pronounced migration behavior with one population of CD34-expressing cells located at the bottom of the microcavities and one population located in the middle of the microcavities at day 14. However, at day 21 the two populations seemed to unite again so that no clear distinction between the two was possible anymore. (4) Conclusions: Single cell migration detection was possible but microscopy and flow cytometry delivered non-uniform data sets. Further optimization is currently being developed

    A Microcavity Array-Based 4D Cell Culture Platform

    No full text
    BACKGROUND: We describe a 4D cell culture platform with which we tried to detect and to characterize migration dynamics of single hematopoietic stem cells in polymer film microcavity arrays integrated into a microtiter plate. METHODS: The system was set ENup with CD34-expressing KG-1a cells as a surrogate for hematopoietic stem cells. We then evaluated the system as an artificial hematopoietic stem cell niche model comprised of a co-culture of human hematopoietic stem cells from cord blood (cord blood CD34+ cells, hHSCs) and human mesenchymal stromal cells (hMSCs) from bone marrow over a period of 21 days. We used a software-based cell detection method to count single hematopoietic stem cells (HSCs) in microcavities. RESULTS: It was possible to detect single HSCs and their migration behavior within single microcavities. The HSCs displayed a pronounced migration behavior with one population of CD34-expressing cells located at the bottom of the microcavities and one population located in the middle of the microcavities at day 14. However, at day 21 the two populations seemed to unite again so that no clear distinction between the two was possible anymore. CONCLUSIONS: Single cell migration detection was possible but microscopy and flow cytometry delivered non-uniform data sets. Further optimization is currently being developed
    corecore