61 research outputs found

    Bestimmung der Auflösungsgrenze in Elementverteilungsaufnahmen von Schichtsystemen

    Full text link
    Wir konnten in dieser Arbeit zeigen, dass mit Elementverteilungsbildern des Transmissionselektronenmikroskops (TEM) Fe/Cr-Schichtsysteme bis auf wenige Ångström genau untersucht werden können. Um diese Genauigkeit mit dem TEM zu erreichen, wurde von uns eine Aufnahmeprozedur entwickelt, die statt langzeitig belichteten Bildern eine Anzahl von kurzzeitig belichteten Bildern aufnimmt und diese rĂ€umlich driftkorrigiert aufsummiert. Durch diese Reduktion des Drifteffekts können Strukturen schĂ€rfer und somit genauer abgebildet werden. Diese Prozedur ermöglicht insbesondere die Untersuchung der ca. 1 nm breiten Übergangsschichten des Schichtsystems. Deren Signal ist in konventionellen Aufnahmen normalerweise nicht von dem Drifteffekt unterscheidbar. HierfĂŒr musste auch der Abbildungsprozess im TEM in die Berechnungen mit einbezogen werden. Zur ÜberprĂŒfung der Ergebnisse wurden sie mit Messungen einer Tomographischen Atomsonde verglichen

    Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz

    Full text link
    The performance of the upgraded solid deuterium ultracold neutron source at the pulsed reactor TRIGA Mainz is described. The current configuration stage comprises the installation of a He liquefier to run UCN experiments over long-term periods, the use of stainless steel neutron guides with improved transmission as well as sputter-coated non-magnetic 58^{58}NiMo alloy at the inside walls of the thermal bridge and the converter cup. The UCN yield was measured in a `standard' UCN storage bottle (stainless steel) with a volume of 32 litres outside the biological shield at the experimental area yielding UCN densities of 8.5 /cm3^3; an increase by a factor of 3.5 compared to the former setup. The measured UCN storage curve is in good agreement with the predictions from a Monte Carlo simulation developed to model the source. The growth and formation of the solid deuterium converter during freeze-out are affected by the ortho/para ratio of the H2_2 premoderator.Comment: 12 pages, 7 figure

    Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance

    Get PDF
    Nanocarbons show great promise for establishing the next generation of Joule heating systems, but suffer from the limited maximum temperature due to precociously convective heat dissipation from electrothermal system to surrounding environment. Here we introduce a strategy to eliminate such convective heat transfer by inserting highly stable and conductive microcapsules into the electrothermal structures. The microcapsule is composed of encapsulated long-chain alkanes and graphene oxide/carbon nanotube hybrids as core and shell material, respectively. Multiform carbon nanotubes in the microspheres stabilize the capsule shell to resist volume-change-induced rupture during repeated heating/cooling process, and meanwhile enhance the thermal conductance of encapsulated alkanes which facilitates an expeditious heat exchange. The resulting microcapsules can be homogeneously incorporated in the nanocarbon-based electrothermal structures. At a dopant of 5%, the working temperature can be enhanced by 30% even at a low voltage and moderate temperature, which indicates a great value in daily household applications. Therefore, the stable and conductive microcapsule may serve as a versatile and valuable dopant for varieties of heat generation systems

    Electrochemical Generation of Catalytically Active Edge Sites in C₂N‐Type Carbon Materials for Artificial Nitrogen Fixation

    Get PDF
    The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH₃) is a potentially carbon‐neutral and decentralized supplement to the established Haber–Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal‐free nitrogen‐doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen‐doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal‐free C₂N material (HAT‐700) is electrochemically etched prior to application in NRR to form active edge‐sites originating from the removal of terminal nitrile groups. Resulting activated metal‐free HAT‐700‐A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH₃ yield of 5.86 ”g mg⁻Âčcat h⁻Âč. Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4
    • 

    corecore