235 research outputs found

    Host movement dominates the predicted effects of climate change on parasite transmission between wild and domestic mountain ungulates

    Get PDF
    Climate change is shifting the transmission of parasites, which is determined by host density, ambient temperature and moisture. These shifts can lead to increased pressure from parasites, in wild and domestic animals, and can impact the effectiveness of parasite control strategies. Understanding the interactive effects of climate on host movement and parasite life histories will enable targeted parasite management, to ensure livestock productivity and avoid additional stress on wildlife populations. To assess complex outcomes under climate change, we applied a gastrointestinal nematode transmission model to a montane wildlife–livestock system, based on host movement and changes in abiotic factors due to elevation, comparing projected climate change scenarios with the historic climate. The wildlife host, Alpine ibex (Capra ibex ibex), undergoes seasonal elevational migration, and livestock are grazed during the summer for eight weeks. Total parasite infection pressure was more sensitive to host movement than to the direct effect of climatic conditions on parasite availability. Extended livestock grazing is predicted to increase parasite exposure for wildlife. These results demonstrate that movement of different host species should be considered when predicting the effects of climate change on parasite transmission, and can inform decisions to support wildlife and livestock health.<br/

    Associational resistance to a pest insect fades with time

    Get PDF
    Tree diversity is one of the drivers of forest resistance to herbivores. Most of the current understanding of the diversity resistance relationship comes primarily from short-term studies. Knowing whether tree diversity effects on herbivores are maintained over time is important for perennial ecosystems like forests. We addressed the temporal dynamics of the diversity resistance relationship by conducting a 6-year survey of pine attacks by the pine processionary moth Thaumetopoea pityocampa (PPM) in a tree diversity experiment where we could disentangle tree composition from host density effects. During the first years after planting the trees, PPM attacks on maritime pine Pinus pinaster were reduced in the presence ofbirch Betula pendula, a fast-growing non-host tree (i.e. associational resistance). This effect was maintained but faded with time as the pines eventually grew taller than neighbouring birches. The number of repeated attacks on individual pine trees also decreased in mixed pine–birch stands. Pine density had a positive effect on stand colonisation by PPM and a negative effect on the proportion of trees that were attacked. Pines were less likely to be repeatedly attacked as pine density increased, with attacks being spread over a larger number of host trees. Collectively, these results unravel the independent contributionof tree species composition and host density to tree resistance to herbivores. Both processes had directional changes over time. These results indicate that the resistance of planted forests to herbivores can be improved by carefully choosing the composition of mixed forests and the timing of species planting.Keywords Associational effects · Forest · ORPHEE experiment · Plant–insect interactions · Thaumetopoea pityocampa </p

    Variation in the ontogenetic allometry of horn length in bovids along a body mass continuum

    Get PDF
    International audienceAllometric relationships describe patterns of proportional covariation between morphological, physiological, or life-history traits and the size of the organisms among populations or species (evolutionary allometry), or within population, among individuals measured at similar (static allometry), or different (ontogenetic allometry) age or developmental stages. When expressed on a log-log scale, allometric relationships are often described by a linear regression: log(y) = a + b log(x) where y is the trait size; x the body size; and a and b the allometric intercept and slope, respectively (Huxley, 1932). Because population and species mean trait size and body size used to estimate evolutionary allometry result from the proportional growth of both traits, patterns of evolutionary allometry emerge from variation in ontogenetic allom

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress

    Sociospatial structure explains marked variation in brucellosis seroprevalence in an Alpine ibex population

    Get PDF
    International audienceIn a context of (re)emerging infectious diseases with wildlife reservoirs, understanding how animal ecology shapes epidemiology is a key issue, particularly in wild ungulates that share pathogens with domestic herbivores and have similar food requirements. For the first time in Europe, brucellosis (Brucella melitensis), a virulent zoonosis, persisted in an Alpine ibex (Capra ibex) population and was transmitted to cattle and humans. To better understand disease dynamics, we investigated the relationships between the spatial ecology of ibex and the epidemiology of brucellosis. Combining home range overlap between 37 GPS-collared individuals and visual observations of 148 visuallymarked individuals monitored during the 2013-2016 period, we showed that females were spatially segregated in at least 4 units all year round, whereas males were more prone to move between female units, in particular during the rutting period. In addition to ibex age, the spatial structure in females largely contributed to variation in seroprevalence in the whole population. These results suggest that non-sexual routes are the most likely pathways of intraspecific transmission, crucial information for management. Accounting for wildlife spatial ecology was hence decisive in improving our ability to better understand this health challenge involving a wildlife reservoir

    Functional diversity underlies demographic responses to environmental variation in European forests: Tree diversity and demography in European forests

    Get PDF
    Aim&nbsp; Biodiversity loss and climate-driven ecosystem modification are leading to substantial changes in forest structure and function. However, the effects of diversity on demographic responses to the environment are poorly understood. We tested the diversity hypothesis (measured through functional diversity) and the mass ratio hypothesis (measured through functional identity) in relation to tree growth, tree mortality and sapling abundance. We sought to determine whether functional diversity underlies demographic responses to environmental variation in European forests.&nbsp; Location&nbsp; Europe (Spain, Germany, Wallonia, Finland and Sweden).&nbsp; Methods&nbsp; We used data from five European national forest inventories from boreal to Mediterranean biomes (c. 700,000 trees in 54,000 plots and 143 tree species) and the main forest types across Europe (i.e. from needle-leaved evergreen forests to broad-leaved deciduous forests). For each forest type, we applied maximum likelihood techniques to quantify the relative importance of stand structure, climate and diversity (i.e. functional diversity and functional identity) as determinants of growth, mortality and sapling abundance. We also tested whether demographic responses to environmental conditions (including stand density, evapotranspiration and temperature anomalies) varied with functional diversity.&nbsp; Results&nbsp; Our results suggest that functional diversity has a positive effect on sapling abundance and growth rates in forests across Europe, while no effect was observed on tree mortality. Functional identity has a strong effect on mortality and sapling abundance, with greater mortality rates in forests dominated by needle-leaved individuals and a greater abundance of saplings in forests dominated by broad-leaved individuals. Furthermore, we observed that functional diversity modified the effects of stand density on demographic responses in Mediterranean forests and the influence of evapotranspiration and temperature anomalies in forests widely distributed across Europe.&nbsp; Main conclusion&nbsp; Our results suggest that functional diversity may play a key role in forest dynamics through complementarity mechanisms, as well as by modulating demographic responses to environmental variation

    Large-Scale Model-Based Assessment of Deer-Vehicle Collision Risk

    Get PDF
    Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer–vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on 74,000 deer–vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer–vehicle collisions and to investigate the relationship between deer–vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer–vehicle collisions, which allows nonlinear environment–deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new “deer–vehicle collision index” for deer management. We show that the risk of deer–vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer–vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer–vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining hunting quota. Open-source software implementing the model can be used to transfer our modelling approach to wildlife–vehicle collisions elsewhere

    New Insights on the Management of Wildlife Diseases Using Multi-State Recapture Models: The Case of Classical Swine Fever in Wild Boar

    Get PDF
    The understanding of host-parasite systems in wildlife is of increasing interest in relation to the risk of emerging diseases in livestock and humans. In this respect, many efforts have been dedicated to controlling classical swine fever (CSF) in the European Wild Boar. But CSF eradication has not always been achieved even though vaccination has been implemented at a large-scale. Piglets have been assumed to be the main cause of CSF persistence in the wild since they appeared to be more often infected and less often immune than older animals. However, this assumption emerged from laboratory trials or cross-sectional surveys based on the hunting bags.In the present paper we conducted a capture-mark-recapture study in free-ranging wild boar piglets that experienced both CSF infection and vaccination under natural conditions. We used multi-state capture recapture models to estimate the immunization and infection rates, and their variations according to the periods with or without vaccination. According to the model prediction, 80% of the infected piglets did not survive more than two weeks, while the other 20% quickly recovered. The probability of becoming immune did not increase significantly during the summer vaccination sessions, and the proportion of immune piglets was not higher after the autumn vaccination.Given the high lethality of CSF in piglets highlighted in our study, we consider unlikely that piglets could maintain the chain of CSF virus transmission. Our study also revealed the low efficacy of vaccination in piglets in summer and autumn, possibly due to the low palatability of baits to that age class, but also to the competition between baits and alternative food sources. Based on this new information, we discuss the prospects for the improvement of CSF control and the interest of the capture-recapture approach for improving the understanding of wildlife diseases

    A harmonized database of European forest simulations under climate change

    Get PDF
    Process-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development. As a consequence, numerous local-scale simulation studies have been conducted over the past decades to assess the impacts of climate change on forests. These studies apply the best available models tailored to local conditions, parameterized and evaluated by local experts. However, this treasure trove of knowledge on climate change responses remains underexplored to date, as a consistent and harmonized dataset of local model simulations is missing. Here, our objectives were (i) to compile existing local simulations on forest development under climate change in Europe in a common database, (ii) to harmonize them to a common suite of output variables, and (iii) to provide a standardized vector of auxiliary environmental variables for each simulated location to aid subsequent investigations. Our dataset of European stand- and landscape-level forest simulations contains over 1.1 million simulation runs representing 135 million simulation years for more than 13,000 unique locations spread across Europe. The data were harmonized to consistently describe forest development in terms of stand structure (dominant height), composition (dominant species, admixed species), and functioning (leaf area index). Auxiliary variables provided include consistent daily climate information (temperature, precipitation, radiation, vapor pressure deficit) as well as information on local site conditions (soil depth, soil physical properties, soil water holding capacity, plant-available nitrogen). The present dataset facilitates analyses across models and locations, with the aim to better harness the valuable information contained in local simulations for large-scale policy support, and for fostering a deeper understanding of the effects of climate change on forest ecosystems in Europe
    corecore