36 research outputs found

    Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC)

    Get PDF
    <p>Synthetic and naturally occurring substances present in food and feed, together with their possible breakdown or reaction products, represent a large number of substances, many of which require risk assessment. EFSA’s Scientific Committee was requested to evaluate the threshold of toxicological concern (TTC) approach as a tool for providing scientific advice about possible human health risks from low level exposures, its applicability to EFSA’s work, and to advise on any additional data that might be needed to strengthen the underlying basis of the TTC approach. The Scientific Committee examined the published literature on the TTC approach, undertook its own analyses and commissioned an <em>in silico </em>investigation of the databases underpinning the TTC approach. The Scientific Committee concluded that the TTC approach can be recommended as a useful screening tool either for priority setting or for deciding whether exposure to a substance is so low that the probability of adverse health effects is low and that no further data are necessary. The following human exposure threshold values are sufficiently conservative to be used in EFSA’s work; 0.15 μg/person per day for substances with a structural alert for genotoxicity, 18 μg/person per day for organophosphate and carbamate substances with anti-cholinesterase activity, 90 μg/person per day for Cramer Class III and Cramer Class II substances, and 1800 μg/person per day for Cramer Class I substances, but for application to all groups in the population, these values should be expressed in terms of body weight, i.e. 0.0025, 0.3, 1.5 and 30 μg/kg body weight per day, respectively. Use of the TTC approach for infants under the age of 6 months, with immature metabolic and excretory systems, should be considered on a case-by-case basis. The Committee defined a number of exclusion categories of substances for which the TTC approach would not be used.</p&gt

    Thresholds of Toxicological Concern for Cosmetics-Related Substances: New Database, Thresholds, and Enrichment of Chemical Space

    Get PDF
    A new dataset of cosmetics-related chemicals for the Threshold of Toxicological Concern (TTC) approach has been compiled, comprising 552 chemicals with 219, 40, and 293 chemicals in Cramer Classes I, II, and III, respectively. Data were integrated and curated to create a database of No-/Lowest-Observed-Adverse-Effect Level (NOAEL/LOAEL) values, from which the final COSMOS TTC dataset was developed. Criteria for study inclusion and NOAEL decisions were defined, and rigorous quality control was performed for study details and assignment of Cramer classes. From the final COSMOS TTC dataset, human exposure thresholds of 42 and 7.9 μg/kg-bw/day were derived for Cramer Classes I and III, respectively. The size of Cramer Class II was insufficient for derivation of a TTC value. The COSMOS TTC dataset was then federated with the dataset of Munro and colleagues, previously published in 1996, after updating the latter using the quality control processes for this project. This federated dataset expands the chemical space and provides more robust thresholds. The 966 substances in the federated database comprise 245, 49 and 672 chemicals in Cramer Classes I, II and III, respectively. The corresponding TTC values of 46, 6.2 and 2.3 μg/kg-bw/day are broadly similar to those of the original Munro dataset

    Improvement of the Cramer classification for oral exposure using the database TTC RepDose – A strategy description

    Full text link
    The present report describes a strategy to refine the current Cramer classification of the TTC concept using a broad database (DB) termed TTC RepDose. Cramer classes 1-3 overlap to some extent, indicating a need for a better separation of structural classes likely to be toxic, moderately toxic or of low toxicity.Groups of structurally similar compounds of high toxicity in Cramer class 1 and of moderate to low toxicity in Cramer class 3 were identified and reassigned to the appropriate Cramer class according to their observed toxicological potency in in vivo studies. This refinement results in a better discrimination of Cramer classes 1 and 3 and an increased number of substances in Cramer class 2. The TTC values are 8.7 mol/person/d (class 1), 6.72 mol/person/d (class 2) and 0.28mol/person/d (class 3). Assuming a median molecular weight of 220. g/mol for the compounds of the TTC RepDose DB, the corresponding TTC values are 1930, 1478 and 63 g/person/d for classes 1, 2 a nd 3 respectively. The derived thresholds are close to the TTC values initially proposed by Munro with 1800, 540 and 90 g/person/d for classes 1, 2 and 3 respectively. Additional structural classes are discussed with a view to further refinement of the current Cramer classification scheme

    Inhalation TTC values: A new integrative grouping approach considering structural, toxicological and mechanistic features

    No full text
    The present publication describes an integrative grouping concept to derive threshold values for inhalation exposure. The classification scheme starts with differences in toxicological potency and develops criteria to group compounds into two potency classes, namely toxic (T-group) or low toxic (L-group). The TTC concept for inhalation exposure is based on the TTC RepDose data set, consisting of 296 organic compounds with 608 repeated-dose inhalation studies. Initially, 21 structural features (SFs) were identified as being characteristic for compounds of either high or low NOEC values (Schüürmann et al., 2016). In subsequent analyses these SF groups were further refined by taking into account structural homogeneity, type of toxicological effect observed, differences in absorption, metabolism and mechanism of action (MoA), to better define their structural and toxicological boundaries
    corecore