9 research outputs found

    Regulation of Organelle Movement in Melanophores by Protein Kinase A (PKA), Protein Kinase C (PKC), and Protein Phosphatase 2A (PP2A)

    Get PDF
    We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A

    Safeguarding human–wildlife cooperation

    Get PDF
    Human–wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human–honeyguide and human–dolphin cooperation, but these are at risk of joining several inactive forms (including human–wolf and human–orca cooperation). Human–wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components—a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge—which face threats from ecological and cultural changes. To safeguard human–wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract-translations for Kiswahili and Portuguese translations of the abstract

    Safeguarding human–wildlife cooperation

    Get PDF
    Human–wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human–honeyguide and human–dolphin cooperation, but these are at risk of joining several inactive forms (including human–wolf and human–orca cooperation). Human–wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components—a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge—which face threats from ecological and cultural changes. To safeguard human–wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures

    The ecology and evolution of human‐wildlife cooperation

    Get PDF
    Abstract: Human‐wildlife cooperation is a type of mutualism in which a human and a wild, free‐living animal actively coordinate their behaviour to achieve a common beneficial outcome. While other cooperative human‐animal interactions involving captive coercion or artificial selection (including domestication) have received extensive attention, we lack integrated insights into the ecology and evolution of human‐wildlife cooperative interactions. Here, we review and synthesise the function, mechanism, development, and evolution of human‐wildlife cooperation. Active cases involve people cooperating with greater honeyguide birds and with two dolphin species, while historical cases involve wolves and orcas. In all cases, a food source located by the animal is made available to both species by a tool‐using human, coordinated with cues or signals. The mechanisms mediating the animal behaviours involved are unclear, but they may resemble those underlying intraspecific cooperation and reduced neophobia. The skills required appear to develop at least partially by social learning in both humans and the animal partners. As a result, distinct behavioural variants have emerged in each type of human‐wildlife cooperative interaction in both species, and human‐wildlife cooperation is embedded within local human cultures. We propose multiple potential origins for these unique cooperative interactions, and highlight how shifts to other interaction types threaten their persistence. Finally, we identify key questions for future research. We advocate an approach that integrates ecological, evolutionary and anthropological perspectives to advance our understanding of human‐wildlife cooperation. In doing so, we will gain new insights into the diversity of our ancestral, current and future interactions with the natural world. Read the free Plain Language Summary for this article on the Journal blog

    Safeguarding human–wildlife cooperation

    Get PDF
    Abstract: Human–wildlife cooperation occurs when humans and free‐living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human–honeyguide and human–dolphin cooperation, but these are at risk of joining several inactive forms (including human–wolf and human–orca cooperation). Human–wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components—a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge—which face threats from ecological and cultural changes. To safeguard human–wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long‐term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract‐translations for Kiswahili and Portuguese translations of the abstract

    Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    No full text

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Diminishing benefits of urban living for children and adolescents' growth and development

    No full text
    corecore