109 research outputs found

    Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N

    Get PDF
    Fossil benthic foraminifera are used to trace past methane release linked to climate change. However, it is still debated whether isotopic signatures of living foraminifera from methane-charged sediments reflect incorporation of methane-derived carbon. A deeper understanding of isotopic signatures of living benthic foraminifera from methane-rich environments will help to improve reconstructions of methane release in the past and better predict the impact of future climate warming on methane seepage. Here, we present isotopic signatures (δ13C and δ18O) of foraminiferal calcite together with biogeochemical data from Arctic seep environments from c. 1200 m water depth, Vestnesa Ridge, 79° N, Fram Strait. Lowest δ13C values were recorded in shells of Melonis barleeanus, − 5.2‰ in live specimens and − 6.5‰ in empty shells, from sediments dominated by aerobic (MOx) and anaerobic oxidation of methane (AOM), respectively. Our data indicate that foraminifera actively incorporate methane-derived carbon when living in sediments with moderate seepage activity, while in sediments with high seepage activity the poisonous sulfidic environment leads to death of the foraminifera and an overgrowth of their empty shells by methane-derived authigenic carbonates. We propose that the incorporation of methane-derived carbon in living foraminifera occurs via feeding on methanotrophic bacteria and/or incorporation of ambient dissolved inorganic carbon

    Cold-seep ostracods from the western Svalbard margin: direct palaeo-indicator for methane seepage?

    Get PDF
    Despite their high abundance and diversity, microfossil taxa adapted to a particular chemosynthetic environment have rarely been studied and are therefore poorly known. Here we report on an ostracod species, Rosaliella svalbardensis gen. et sp. nov., from a cold methane seep site at the western Svalbard margin, Fram Strait. The new species shows a distinct morphology, different from other eucytherurine ostracod genera. It has a marked similarity to Xylocythere, an ostracod genus known from chemosynthetic environments of wood falls and hydrothermal vents. Rosaliella svalbardensis is probably an endemic species or genus linked to methane seeps. We speculate that the surface ornamentation of pore clusters, secondary reticulation, and pit clusters may be related to ectosymbiosis with chemoautotrophic bacteria. This new discovery of specialized microfossil taxa is important because they can be used as an indicator species for past and present seep environments (http: //zoobank.org/urn:lsid:zoobank.org:pub:6075FF30-29D5-4DAB-9141-AE722CD3A69B)

    Response of benthic foraminifera to environmental successions of cold seeps from Vestnesa Ridge, Svalbard: Implications for interpretations of paleo-seepage environments

    Get PDF
    This paper presents the results of a study on the response of living benthic foraminifera to progressing environmental successions in a cold-seep ecosystem. Sediment samples were collected from Vestnesa Ridge (79°N, Fram Strait) at ~1200 m water depth. The distribution of live (Rose Bengal-stained) foraminifera were analyzed in the upper sediment layers in relation to pore water biogeochemical data together with the distribution of sulfur-bacterial mats and Siboglinidae tubeworms. At methane cold seeps, the process of environmental succession is strongly connected to the duration and strength of methane seepage and the intensity of methane-related biological processes, e.g, aerobic and anaerobic oxidation of methane (MOx and AOM, respectively). The results show that the distribution patterns of benthic foraminifera change according to the progressing environmental succession. The benthic foraminifera seemed to thrive in sediments with a moderate activity of seepage, dominated by MOx, i.e, at an early stage of seepage or when seepage decreases at a late stage of the succession. Species composition of the foraminiferal fauna under these conditions was similar to the control sites (outside of pockmarks with no seepage); the dominant species being Melonis barleeanus and Cassidulina neoteretis. In sediments with strong seepage and high AOM activity, the hostile environmental conditions due to the presence of toxic sulfide caused a reduction in the foraminiferal population, and samples were almost barren of foraminifera. In environments of moderate methane seepage, the presence of chemosynthetic Siboglinidae tube worms potentially support communities of the epibenthic species Cibicidoides wuellerstorfi. Despite the very different environmental conditions, the foraminiferal assemblages were very similar (or nearly absent). Therefore, the foraminiferal faunas cannot be used as exclusive indicators of past strength of methane seepage in palaeoceanographic interpretations

    A North Atlantic tephrostratigraphical framework for 130-60 ka b2k:new tephra discoveries, marine-based correlations, and future challenges

    Get PDF
    Building chronological frameworks for proxy sequences spanning 130–60 ka b2k is plagued by difficulties and uncertainties. Recent developments in the North Atlantic region, however, affirm the potential offered by tephrochronology and specifically the search for cryptotephra. Here we review the potential offered by tephrostratigraphy for sequences spanning 130–60 ka b2k. We combine newly identified cryptotephra deposits from the NGRIP ice-core and a marine core from the Iceland Basin with previously published data from the ice and marine realms to construct the first tephrostratigraphical framework for this time-interval. Forty-three tephra or cryptotephra deposits are incorporated into this framework; twenty three tephra deposits are found in the Greenland ice-cores, including nine new NGRIP tephras, and twenty separate deposits are preserved in various North Atlantic marine sequences. Major, minor and trace element results are presented for the new NGRIP horizons together with age estimates based on their position within the ice-core record. Basaltic tephras of Icelandic origin dominate the framework with only eight tephras of rhyolitic composition found. New results from marine core MD99-2253 also illustrate some of the complexities and challenges of assessing the depositional integrity of marine cryptotephra deposits. Tephra-based correlations in the marine environment provide independent tie-points for this time-interval and highlight the potential of widening the application of tephrochronology. Further investigations, however, are required, that combine robust geochemical fingerprinting and a rigorous assessment of tephra depositional processes, in order to trace coeval events between the two depositional realms

    Deep ocean storage of heat and CO2 in the Fram Strait, Arctic Ocean during the last glacial period

    Get PDF
    MME is funded by the Research Council of Norway and the Co-funding of Regional, National, and International Programmes (COFUND) Marie Sklodowska-Curie Actions under the EU Seventh Framework Programme (FP7), project number 274429, and the Research Council of Norway through its Centres of Excellence funding scheme, grant number 223259.The Fram Strait is the only deep gateway between the Arctic Ocean and the Nordic Seas and thus is a key area to study past changes in ocean circulation and the marine carbon cycle. Here, we study deep ocean temperature, δ18O, carbonate chemistry (i.e., carbonate ion concentration, [CO32-]), and nutrient content in the Fram Strait during the late glacial (35,000-19,000 years BP) and the Holocene based on benthic foraminiferal geochemistry and carbon cycle modelling. Our results indicate a thickening of Atlantic water penetrating into the northern Nordic Seas, forming a subsurface Atlantic intermediate water layer reaching to at least ~2600 m water depth during most of the late glacial period. The recirculating Atlantic layer was characterized by relatively high [CO32-] and low δ13C during the late glacial, and provides evidence for a Nordic Seas source to the glacial North Atlantic intermediate water flowing at 2000-3000 m water depth, most likely via the Denmark Strait. In addition, we discuss evidence for enhanced terrestrial carbon input to the Nordic Seas at ~23.5 ka. Comparing our δ13C and qualitative [CO32-] records with results of carbon cycle box modelling suggests that the total terrestrial CO2 release during this carbon input event was low, slow, or directly to the atmosphere.Publisher PDFPeer reviewe

    Temporal and spatial structure of multi‐millennial temperature changes at high latitudes during the Last Interglacial

    Get PDF
    The Last Interglacial (LIG, 129–116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions

    Warm Atlantic surface water inflow to the Nordic seas 34–10 calibrated ka B.P.

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA1201, doi:10.1029/2007PA001453.A number of short-lasting warm periods (interstadials) interrupted the otherwise cold climate of the last glacial period. These events are supposedly linked to the inflow of the warm Atlantic surface water to the Nordic seas. However, previous investigations of planktonic foraminifera from the Nordic seas have not been able to resolve any significant difference between the interstadials and intervening cold stadials, as the faunas are continuously dominated by the polar species Neogloboquadrina pachyderma s. Here we examine the planktonic foraminifera assemblages from a high-resolution core, LINK17, taken at 1500 m water depth off northern Scotland below the warmest part of the inflowing Atlantic water. The core comprises the time period 34–10 calibrated ka B.P., the coldest period of the last glaciation and the deglaciation. The results reveal a hitherto unknown faunistic variability indicating significant fluctuations in both surface water inflow and in summer sea surface temperatures. During the interstadials, relatively warm Atlantic surface water (4–7°C) flowed north into the eastern Norwegian Sea. During the stadials and Heinrich events the surface inflow stopped and the temperatures in the study area dropped to <2°C. The Last Glacial Maximum was nearly as warm as the interstadials, but the inflow was much more unstable. The data reveal two previously unrecognized warming events each lasting more than 1600 years and preceding Heinrich events HE3 and HE2, respectively. By destabilizing the ice sheets on the shelves the warmings may have played a crucial role for the development of Heinrich events HE2 and HE3.The study of LINK17 was financed by UNIS as a part of the ESF-EuroClimate Program Resolution (grant 04-ECLIM-FP33)

    Visualizing tephra deposits and sedimentary processes in the marine environment: The potential of X‐ray microtomography

    Get PDF
    Localized tephra deposition in marine sequences is the product of many complex primary and secondary depositional processes. These can significantly influence the potential applicability of tephra deposits as isochronous marker horizons and current techniques, used in isolation, may be insufficient to fully unravel these processes. Here we demonstrate the innovative application of X-ray microtomography (µCT) to successfully identify tephra deposits preserved within marine sediments and use these parameters to reconstruct their internal three-dimensional structure. Three-dimensional visualizations and animations of tephra dispersal in the sediment permit a more thorough assessment of postdepositional processes revealing a number of complex microsedimentological features that are not revealed by conventional methods. These features include bioturbation burrows and horizontally discontinuous tephra packages, which have important ramifications for the stratigraphic placement of the isochron in a sedimentary sequence. Our results demonstrate the potential for utilizing rigorous two and three-dimensional microsedimentological analysis of the ichnofabric to enhance and support the use of tephra deposits as isochronous marker horizons and to identify the stratigraphic position that best reflects the primary fallout of ash. The application also provides an exceptional insight into the style and rate of sedimentation processes and permits an assessment of the stratigraphic integrity of a tephra deposit. We discuss the possibility of applying these µCT methods to the identification of cryptotephras within various paleoclimatic sequences and to enhance our understanding of marine sedimentation processes
    corecore