309 research outputs found

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Detecting SARS-CoV-2 3CLpro Expression and Activity Using a Polyclonal Antiserum and a Luciferase-Based Biosensor

    Get PDF
    The need to stem the current outbreak of SARS-CoV-2 responsible for COVID-19 is driving the search for inhibitors that will block coronavirus replication and pathogenesis. The coronavirus 3C-like protease (3CLpro) encoded in the replicase polyprotein is an attractive target for antiviral drug development because protease activity is required for generating a functional replication complex. Reagents that can be used to screen for protease inhibitors and for identifying the replicase products of SARS-CoV-2 are urgently needed. Here we describe a luminescence-based biosensor assay for evaluating small molecule inhibitors of SARS-CoV-2 3CLpro/main protease. We also document that a polyclonal rabbit antiserum developed against SARS-CoV 3CLpro cross reacts with the highly conserved 3CLpro of SARS-CoV-2. These reagents will facilitate the pre-clinical evaluation of SARS-CoV-2 protease inhibitors

    Cross-imaging system comparison of backscatter coefficient estimates from a tissue-mimicking material

    Get PDF
    A key step toward implementing quantitative ultrasound techniques in a clinical setting is demonstrating that parameters such as the ultrasonic backscatter coefficient (BSC) can be accurately estimated independent of the clinical imaging system used. In previous studies, agreement in BSC estimates for well characterized phantoms was demonstrated across different laboratory systems. The goal of this study was to compare the BSC estimates of a tissue mimicking sample measured using four clinical scanners, each providing RF echo data in the 1-15 MHz frequency range. The sample was previously described and characterized with single-element transducer systems. Using a reference phantom for analysis, excellent quantitative agreement was observed across the four array-based imaging systems for BSC estimates. Additionally, the estimates from data acquired with the clinical systems agreed with theoretical predictions and with estimates from laboratory measurements using single-element transducers

    CD40 ligand is necessary and sufficient to support primary diffuse large B-cell lymphoma cells in culture: a tool for in vitro preclinical studies with primary B-cell malignancies

    Get PDF
    Established cell lines are utilized extensively to study tumor biology and preclinical therapeutic development; however, they may not accurately recapitulate the heterogeneity of their corresponding primary disease. B-cell tumor cells are especially difficult to maintain under conventional culture conditions, limiting access to samples that faithfully represent this disease for preclinical studies. Here, we used primary canine diffuse large B-cell lymphoma to establish a culture system that reliably supports the growth of these cells. CD40 ligand, either expressed by feeder cells or provided as a soluble two-trimeric form, was sufficient to support primary lymphoma cells in vitro. The tumor cells retained their original phenotype, clonality and known karyotypic abnormalities after extended expansion in culture. Finally, we illustrate the utility of the feeder cell-free culture system for comparable assessment of cytotoxicity using dog and human B-cell malignancies. We conclude this system has broad applications for in vitro preclinical development for B-cell malignancies

    Trajectories of the Earth System in the Anthropocene

    Get PDF
    This is the final version of the article. Available from National Academy of Sciences via the DOI in this record.We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.W.S. and C.P.S. are members of the Anthropocene Working Group. W.S., J.R., K.R., S.E.C., J.F.D., I.F., S.J.L., R.W. and H.J.S. are members of the Planetary Boundaries Research Network PB.net and the Earth League’s EarthDoc Programme supported by the Stordalen Foundation. T.M.L. was supported by a Royal Society Wolfson Research Merit Award and the European Union Framework Programme 7 Project HELIX. C.F. was supported by the Erling– Persson Family Foundation. The participation of D.L. was supported by the Haury Program in Environment and Social Justice and National Science Foundation (USA) Decadal and Regional Climate Prediction using Earth System Models Grant 1243125. S.E.C. was supported in part by Swedish Research Council Formas Grant 2012-742. J.F.D. and R.W. were supported by Leibniz Association Project DOMINOES. S.J.L. receives funding from Formas Grant 2014-589. This paper is a contribution to European Research Council Advanced Grant 2016, Earth Resilience in the Anthropocene Project 743080

    Obesity Prevalence and Dietary Factors Among Preschool-Aged Head Start Children in Remote Alaska Native Communities: Baseline Data from the ‘‘Got Neqpiaq?’’ Study

    Get PDF
    Background: American Indian and Alaska Native preschool-aged children experience a high prevalence of obesity, yet are underrepresented in obesity prevention research. This study examined obesity prevalence and dietary risk factors among Alaska Native preschool-aged children in southwest Alaska. Methods: The study used baseline data from ‘‘Got Neqpiaq?’’ a culturally centered multilevel intervention focused on Yup’ik Alaska Native children, aged 3–5 years, enrolled in Head Start in 12 communities in southwest Alaska (n = 155). The primary outcomes were BMI percentile, overweight, and obesity. Dietary factors of interest were measured using biomarkers: traditional food intake (nitrogen stable isotope ratio biomarker), ultraprocessed food intake (carbon stable isotope ratio biomarker), and vegetable and fruit intake (skin carotenoid status biomarker measured by the Veggie Meter). Cardiometabolic markers (glycated hemoglobin [HbA1c] and blood cholesterol) were also measured. Results: Among the Yup’ik preschool-aged children in the study, the median BMI percentile was 91, and the prevalence of overweight or obesity was 70%. The traditional food intake biomarker was negatively associated with BMI, whereas the ultraprocessed foods and vegetable and fruit biomarkers were not associated with BMI. HbA1c and blood cholesterol were within healthy levels. Conclusions: The burden of overweight and obesity is high among Yup’ik preschool-aged children. Traditional food intake is inversely associated with BMI, which underscores the need for culturally grounded interventions that emphasize traditional values and knowledge to support the traditional food systems in Alaska Native communities in southwest Alaska. Registered with ClinicalTrials.gov #NCT03601299.Ye

    Vision-related quality of life and Appearance concerns are associated with anxiety and depression after eye enucleation: A cross-sectional study

    Get PDF
    © 2015 Ye et al. Aims: To investigate the association of demographic, clinical and psychosocial variables with levels of anxiety and depression in participants wearing an ocular prosthesis after eye enucleation. Methods: This cross-sectional study included 195 participants with an enucleated eye who were attending an ophthalmic clinic for prosthetic rehabilitation between July and November 2014. Demographic and clinical data, and self-reported feelings of shame, sadness and anger were collected. Participants also completed the National Eye Institute Visual Function Questionnaire, the Facial Appearance subscale of the Negative Physical Self Scale, and the Hospital Anxiety and Depression Scale. Regression models were used to identify the factors associated with anxiety and depression. Results: The proportion of participants with clinical anxiety was 11.8% and clinical depression 13.8%. More anxiety and depression were associated with poorer vision-related quality of life and greater levels of appearance concerns. Younger age was related to greater levels of anxiety. Less educated participants and those feeling more angry about losing an eye are more prone to experience depression. Clinical variables were unrelated to anxiety or depression. Conclusions: Anxiety and depression are more prevalent in eye-enucleated patients than the general population, which brings up the issues of psychiatric support in these patients. Psychosocialrather than clinical characteristics were associated with anxiety and depression. Longitudinal studies need to be conducted to further elucidate the direction of causality before interventions to improve mood states are developed. Copyright

    Metformin is a metabolic modulator and radiosensitiser in rectal cancer

    Get PDF
    Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer

    Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella

    Get PDF
    Background: Foodborne outbreaks of Salmonella remain a pressing public health concern. We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting more than 30 patients in our hospital. This outbreak was linked to community, national and European-wide cases. Hospital patients with Salmonella are at high risk, and require a rapid response. We initially investigated this outbreak by whole-genome sequencing using a novel rapid protocol on the Illumina MiSeq; we then integrated these data with whole-genome data from surveillance sequencing, thereby placing the outbreak in a national context. Additionally, we investigated the potential of a newly released sequencing technology, the MinION from Oxford Nanopore Technologies, in the management of a hospital outbreak of Salmonella. Results: We demonstrate that rapid MiSeq sequencing can reduce the time to answer compared to the standard sequencing protocol with no impact on the results. We show, for the first time, that the MinION can acquire clinically relevant information in real time and within minutes of a DNA library being loaded. MinION sequencing permits confident assignment to species level within 20 min. Using a novel streaming phylogenetic placement method samples can be assigned to a serotype in 40 min and determined to be part of the outbreak in less than 2 h. Conclusions: Both approaches yielded reliable and actionable clinical information on the Salmonella outbreak in less than half a day. The rapid availability of such information may facilitate more informed epidemiological investigations and influence infection control practices

    A Broadly Applicable Strategy for Entry into Homogeneous Nickel(0) Catalysts from Air-Stable Nickel(II) Complexes

    Get PDF
    A series of air-stable nickel complexes of the form L[subscript 2]Ni(aryl) X (L = monodentate phosphine, X = Cl, Br) and LNi(aryl)X (L = bis-phosphine) have been synthesized and are presented as a library of precatalysts suitable for a wide variety of nickel-catalyzed transformations. These complexes are easily synthesized from low-cost NiCl[subscript 2]·6H[subscript 2]O or NiBr[subscript 2]·3H[subscript 2]O and the desired ligand followed by addition of 1 equiv of Grignard reagent. A selection of these complexes were characterized by single-crystal X-ray diffraction, and an analysis of their structural features is provided. A case study of their use as precatalysts for the nickel-catalyzed carbonyl-ene reaction is presented, showing superior reactivity in comparison to reactions using Ni(cod)[subscript 2]. Furthermore, as the precatalysts are all stable to air, no glovebox or inert-atmosphere techniques are required to make use of these complexes for nickel-catalyzed reactions.National Institute of General Medical Sciences (U.S.) (GM63755)National Science Foundation (U.S.). Graduate Research Fellowshi
    • …
    corecore