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We describe an approach for characterizing the process performed by a quantum gate using quantum process
tomography, by first modeling the gate in an extended Hilbert space, which includes nonqubit degrees of
freedom. To prevent unphysical processes from being predicted, present quantum process tomography proce-
dures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the
system being described. By contrast, the procedure presented here assumes a particular class of physical
processes, and enforces physicality by fitting the data to this model. This allows quantum process tomography
to be performed using a smaller experimental data set, and produces parameters with a direct physical inter-
pretation. The approach is demonstrated by example of mode matching in an all-optical controlled-NOT gate.
The techniques described are general and could be applied to other optical circuits or quantum computing
architectures.
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Quantum-information science promises information pro-
cessing and transmission capabilities far beyond what is
achievable using classical physics. In particular, quantum
computing has the potential to solve problems that are intrac-
table on classical computers. Processing quantum informa-
tion requires quantum gates designed to implement multi-
and single qubit unitary transformations on up to a few qu-
bits. In practice experimental quantum gates perform a pro-
cess which approximates the desired unitary operation and
usually includes some decoherence. Characterizing these
quantum processes is critical. This can be achieved through
quantum process tomography �QPT� �1–7�, which expresses
the experimental process in terms of a basis of unitary op-
erations that span the space of allowed operations. Experi-
mental noise usually results in unphysical process recon-
structions, and a maximum-likelihood correction procedure
�6,8� must be used to find the nearest physical process. An
alternative approach, which we present here, is to construct a
physical model of the experimental gate by extending the
Hilbert space to include nonqubit degrees of freedom. Ex-
perimental data are then fitted to this model to infer the pa-
rameters describing the system. This step replaces the stan-
dard maximum-likelihood correction procedure. The
quantum process in the qubit space is inferred by tracing out
these additional degrees of freedom from the model, where-
upon mixing and decoherence effects manifest themselves.

A quantum computer is a large interferometer �9�, and it is
likely to be mode mismatch of interfering modes that ulti-
mately limits performance. We are therefore motivated to
model imperfections in gate performance in terms of mode
mismatch. This requires us to consider the nonqubit degrees
of freedom of physical qubits. This approach is most natural
for optical gate implementations, where the spatiotemporal
structure of photonic qubits must be considered; however, in
principle it could be applied to quantum gates in any physi-
cal architecture.

Here we consider linear optics quantum computing
�LOQC� �10� in particular. We construct a model that
explicitly allows for the effects of mode mismatch, whereby
photon indistinguishability is compromised within a circuit,
thereby undermining interference effects. We show that by
fitting the parameters in the model to experimental data, the
mode-matching characteristics of an experimental gate can
be obtained. From the model, simulated measurement prob-
abilities can be determined analytically, which are immune
from the effects of experimental noise. This allows QPT to
be performed without requiring maximum-likelihood correc-
tion to ensure physicality. This procedure could be applied to
other quantum-computing architectures by identifying the
physical processes of importance and constructing a suitable
gate model. Importantly, this technique reduces the range of
input states and measurement bases required to reconstruct
the process, which may be of considerable advantage for
architectures where the full range of measurements is not
possible.

Several in-principle demonstrations of elementary LOQC
gates have recently been performed �11–14�. We illustrate
our techniques by example of a LOQC implementation of the
controlled-NOT �CNOT� gate �15�, shown in Fig. 1. The gate
employs dual-rail logic whereby a qubit is encoded across
two spatial modes of a single photon. The gate is nondeter-
ministic and postselected upon detection of exactly one pho-
ton across the control modes and one across the target
modes. By considering a gate that operates using coincidence
detection we significantly simplify the decoherence effects
we need to consider. However our approach can be also used
to analyze heralded gates �16,17�. Our experimental gate
construction is identical to that reported in �12�. Experimen-
tally, beam splitters are implemented using wave plates and
polarizing beam displacers, allowing splitting ratios and
phase delays to be set with a high degree of accuracy. We
therefore restrict ourselves to considering the effects of mode
mismatch.

We introduce a representation for photons which explic-
itly captures their spatiotemporal structure. Specifically, we
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represent photons in terms of their wave function across the
photon degrees of freedom �e.g., space, time, polarization,
etc.�,

��� = �
k1

¯ �
kn

��k1,…,kn�âk1,…,kn

† dk1 ¯ dkn�0� �1�

where ��k1 ,… ,kn� is the joint wave function across the pho-
ton degrees of freedom k1 ,… ,kn, and âk1,…,kn

† is the single-
photon creation operator at the corresponding infinitesimal
position, time, etc. This is a more generalized version of the
representation adopted in �17� when studying input distin-
guishability effects in LOQC.

The CNOT gate described strictly requires complete path
indistinguishability at all locations in the circuit where pho-
tonic interactions take place. When photon indistinguishabil-
ity is compromised nonideal gate operation ensues and the
gate no longer implements the CNOT logical transformation.
The introduction of such distinguishability is generically re-
ferred to as mode mismatch and is one of the major chal-
lenges facing experimental implementations. Mode mis-
match may arise for a number of reasons: imperfect spatial
overlap between photons; imperfect temporal synchroniza-
tion; differing center frequencies or bandwidths; differing
polarization; or any other effect that introduces distinguish-
ing information between photons. These problems manifest
themselves not only for separate photons, but also for single
photons where self-interference takes place between different
paths.

We model mode mismatch by introducing displacements
�i.e., distinguishability� into the photon wave function at dif-
ferent points in the circuit. Figure 1 shows the five locations
where displacements are introduced, labeled �1 ,… ,�5. These
displacements are sufficient to model arbitrary mode-
mismatch effects �i.e., the introduction of additional dis-

placements will be redundant�. When a photon passes
through a � box it undergoes the transformation

��k1,…,kn� → ��k1 + �m,1,…,kn + �m,n� �2�

where �m,n is the displacement introduced at location m into
the nth photon degree of freedom. We have assumed
��k1 ,… ,kn� to be Gaussian for simplicity. Arbitrary forms
for the wave function could be chosen, however, specifically
using Gaussians does not affect the generality of the model
or detract from its predictive power. This is because it is the
degree of wave-function overlap which is of significance,
and, regardless of its form, there will always be a set of �’s
corresponding to a given degree of overlap. However, de-
pending on the form and variance of the wave function, the
magnitude of the � parameters corresponding to a given de-
gree of distinguishability will change. This complicates a
quantitative interpretation of the parameters. Instead they are
best interpreted in terms of their relative magnitude.

In addition to mode mismatch, the model accommodates
for distinguishability which arises during state preparation
�implicitly incorporated into �1, �2, and �3� and measurement
��1 and �5�. Parameters �1 and �5 do not affect circuit opera-
tion when operating in the computational basis. This is be-
cause state preparation �measurement� in a noncomputational
basis is equivalent to the introduction of beam splitters be-
fore �after� the circuit to generate the required superposition.
When operating in the computational basis these virtual
beam splitters are not used and therefore do not form inter-
ferometers, rendering terms �1 and �5 irrelevant. Other opti-
cal circuits could be modeled in a similar way by identifying
the locations in the circuit where mode mismatch could oc-
cur and constructing an appropriate circuit model.

It is intuitive that, in the context of gate operation, mode
mismatch in any single degree of freedom is completely
equivalent to mode mismatch in any other single degree of
freedom. This is because it is the magnitude of photon dis-
tinguishability, not the degree of freedom in which it is in-
troduced, which results in nonideal gate operation. However,
it is not obvious that mode mismatch that occurs in multiple
locations and multiple degrees of freedom is equivalent to
mode mismatch in a single degree of freedom. We now dem-
onstrate that this is the case, and consequently a single de-
gree of freedom in photon distinguishability is sufficient to
model arbitrary mode-mismatch effects.

We introduce a geometric representation for the mode-
mismatch parameter space, as shown in Fig. 2. We let each
axis of the graph represent a particular photon degree of
freedom, and every point on an axis a vector quantity, rep-
resenting the mode-mismatch parameters in that degree of
freedom. From the point of view of gate operation, a point on
the k1 axis is completely equivalent to the corresponding
point on the k2 axis. If mode mismatch occurs in multiple
degrees of freedom, the contribution from the different de-
grees of freedom results in a point away from the main axes.
However, the choice of axes for photon degrees of freedom
is completely arbitrary and therefore the set of equivalent
mode-mismatch parameters must be rotationally invariant in
the space of photon degrees of freedom. Thus, any point in
mode-mismatch parameter space can be rotated onto one of

FIG. 1. Schematic of the CNOT gate using beam splitters with
reflectivities �. c and t denote the control and target qubits, respec-
tively. Modes labeled � are discarded and serve to balance the
amplitudes in the different paths. The gate is postselected upon
detection of exactly one photon between the c modes and one be-
tween the t modes. � boxes represent mode-mismatch parameters,
described in the text. We adopt the phase-asymmetric beam-splitter
convention, where sign inversion takes place upon reflection from
the gray beam-splitter surfaces.
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the main axes, i.e., into a single degree of freedom. There-
fore it is sufficient to express photons as a weighted integral
over a single degree of freedom. Equivalently, five scalar
quantities are sufficient to completely characterize the gate’s
mode mismatch. This geometric argument generalizes to
higher dimensions.

The inherent equivalence of the mode-mismatch degrees
of freedom unfortunately raises obstacles in the experimental
interpretation of the parameters. Specifically, upon inspection
of the parameters it is not possible, in principle, to determine
in which photon degree�s� of freedom the mode mismatch is
occurring. For example, if temporal mismatch occurs, this
will manifest itself in exactly the same way as spatial mis-
match and there is no way from the parameters to infer
which is taking place �assuming coarse experimental spatio-
temporal resolution�.

Using the gate model we are able to derive analytic ex-
pressions for arbitrary coincidence measurement expectation
values given arbitrary input states. We construct an 8�8
matrix Mexp, of experimentally determined coincidence ex-
pectation values, and a corresponding matrix Mmodel, of ana-
lytic expressions derived from the gate model. The rows
of the matrices correspond to the input states �00�,
�01�, �10�, �11�, �+ + �, �+−�, �−+ �, �−−�, and the columns to
the corresponding measurement settings, where �± �
= �1/�2���0�± �1��. We define the error matrix as

Merror = �Mexp − Mmodel� �3�

where the absolute value is performed elementwise. From
Merror we define the maximum and mean errors

Emax = max�Merror� ,

Emean = mean�Merror� . �4�

We also consider the process fidelity FP �5,6,18�, defined as

FP = tr���A
1/2�B�A

1/2�2 �5�

where �A and �B are the process matrices of the processes
being compared.

We minimize Emax by optimizing across the mode-
mismatch parameters �1 ,… ,�5, which we label �̃min. These
results are substituted back into the gate model to generate
an optimized model. The parameters �̃min are tabulated in
Table I.

We apply the estimation procedure to the experimental
CNOT gate and use Emax and Emean to compare the gate model
to the experimental gate. The results are summarized in
Table II. It is evident that the optimized gate model agrees
with the experimental data much better than the ideal gate
model �i.e., where mode mismatch is ignored�. The worst-
case error observed is on the same order as recent maximum-
likelihood QPT reconstructions performed on the same ex-
perimental gate �approximately 2.1%� �6�. It should be noted
that the model always predicts pure states in the extended
Hilbert space and the � parameters, which completely
characterize the gate’s operation, have a physical interpreta-
tion. When expectation values are calculated �i.e., photode-
tection is applied� these additional degrees of freedom are
effectively traced out, which introduces mixture.

We perform QPT on the optimized gate model to con-
struct a process matrix, which does not require a maximum-
likelihood correction procedure since the model is inherently
physical and self-consistent. From this we calculate the pro-
cess fidelity with the ideal CNOT process, which yields FP
=0.88, consistent with the result produced through
maximum-likelihood estimation of FP=0.87. The process fi-
delity between the process matrices predicted by the two
estimation procedures is FP=0.95, indicating that the pro-
cesses predicted by the two approaches are highly consistent.
Thus, using a far smaller data set than is required for full
QPT �64 vs 256 measurements� we predict essentially the
same process matrix. This significant reduction comes about
because we only need sufficient data to determine the five �
parameters from which any remaining data necessary for
QPT can be inferred. This could be of particular importance
in architectures where performing all of the measurements
required for full QPT is prohibitive. Instead, the parameters
describing the physical system could be determined from a
smaller set of more accessible measurements, from which all
of the data necessary for QPT can be inferred.

FIG. 2. Graphical representation of the mode-mismatch param-
eter space, in two degrees of freedom only �k1 and k2�. �a� Mode
mismatch in a single degree of freedom, represented by the point P.
�b� Equivalence of mode mismatch in any single degree of freedom,
represented by the points P and Q. �c� Equivalence of mode mis-
match in multiples of degrees of freedom M and a single degree of
freedom N through rotational invariance in the choice of axes.

TABLE I. Optimized values of �1 ,… ,�5 in units of inverse pho-
ton bandwidth �i.e. wave-function variance�.

Parameter �1 �2 �3 �4 �5

Magnitude −0.30 0.50 −0.55 0.10 −0.45

TABLE II. Maximum and mean error between experimental
�12� and predicted expectation values, using the ideal CNOT gate
model, optimized gate model, and optimized gate model where pa-
rameters are estimated independently for each input setting.

Gate model Emax Emean

Ideal �i.e., no mode mismatch� 15.25% 3.26%

Optimized �globally� 2.97% 1.32%

Optimized �independently� 1.94% 0.67%
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Next we repeat the estimation procedure where the mode-
mismatch parameters are estimated independently for each
input state used, allowing for input-state-dependent effects.
This yields a significant improvement over the model with
static parameters, as shown in Table II. This is indicative that
input-state-dependent effects are a contributor to loss of gate
fidelity. We infer that imperfections in the wave plates and
their alignment change the mode-matching conditions in the
circuit slightly for each different input state. Thus, by ex-
panding the assumptions as to the physical nature of the
processes taking place, one can significantly improve the ac-
curacy of the model.

Experimentally, the target interferometer is assembled
first and therefore ought to exhibit the least mode mismatch.
Thus, we expect the �4 parameter to be smallest. This is
consistent with our estimation of �4. Following this, the con-
trol interferometer is assembled. Similarly, we expect the �1
parameter to be the next smallest. Again, this is consistent
with our results. Developing a complete understanding of
circuit operation based on these figures, however, is compli-
cated by the fact that the quoted parameters are globally
optimized, whereas it is evident that input-state-dependent
effects are significant. Thus, a complete interpretation would
necessitate considering the parameters for the complete
range of input states. Nevertheless, the parameters appear to
give a consistent indication of the relative mode-match qual-
ity of different parts of the circuit.

The parameter �2 only influences gate operation through
interaction between the control and target qubits. In other
words, in the absence of the control qubit, �2 is invisible. In
general, parameters that do not affect interference will be
invisible. For example, if we consider a displacement that
affects all gate inputs, clearly this is noninterferometric and
will not affect two-qubit gate operation. However, if we were
to embed the gate into, say, a three-qubit circuit, this param-
eter could well become interferometric. More generally, in
order to fully characterize a given gate we may postulate that
it be necessary to embed the gate into a higher-dimensional
circuit in order to observe all physical parameters. This is an
important realization, since in reality we intend to operate
gates as a part of larger circuits, not in isolation, and as such
parameters which are invisible when operating in isolation
could well become critical when operating in the context of a
larger circuit �19�.

We have presented a model for a CNOT gate in the LOQC

architecture, which explicitly allows for the effects of mode
mismatch. By fitting experimental data to this model we
demonstrated that it is possible to infer the mode-matching
characteristics of experimental gates, leading to significantly
improved gate models. In the worst case, the error margins in
the predictions made by the optimized gate models were
shown to be similar to recent maximum-likelihood QPT
studies, but calculated using a smaller data set. Due to the
counting statistics of the photon sources we expect gate error
to exhibit a lower bound of approximately 1.5%.1 In the case
of the optimized gate models the error margins were, on
average, within this lower bound.

The ability to infer the physical characteristics of a gate
represents a powerful diagnostic tool. It also allows us to
perform QPT with a significantly reduced experimental data
set, since only the parameters stipulated by the physical
model need be determined, from which remaining measure-
ment probabilities can be inferred. Because these probabili-
ties are exact, the necessity for maximum-likelihood correc-
tion is mitigated. This approach to performing QPT differs
from maximum-likelihood techniques in that it makes spe-
cific physical assumptions regarding the nature of the pro-
cesses taking place and models these by expanding the Hil-
bert space to include nonqubit degrees of freedom. We also
showed that by expanding the physical assumptions the
model can be significantly improved. The model presented
produces estimates which are inherently physical, pure, and
self-consistent, and it relies on parameters with a physical
interpretation. The techniques described are nonspecific and
could be applied to other optical circuits, or quantum-
computing architectures by first constructing suitable physi-
cal models.
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