116 research outputs found

    Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes

    Get PDF
    Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O(2) and CO(2) exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (P(N)) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna, and Swarna-Sub1) were submerged for 13 days in the field and leaf gas films, chlorophyll, and the capacity for underwater P(N) at near ambient and high CO(2) were assessed with time of submergence. At high CO(2) during the P(N) assay, all genotypes initially showed high rates of underwater P(N), and this rate was not affected by time of submergence in FR13A. This superior photosynthetic performance of FR13A was not evident in Swarna-Sub1 (carrying the SUB1 QTL) and the declines in underwater P(N) in both Swarna-Sub1 and Swarna were equal to that in IR42. At near ambient CO(2) concentration, underwater P(N) declined in all four genotypes and this corresponded with loss of leaf gas films with time of submergence. FR13A retained leaf gas films moderately longer than the other genotypes, but gas film retention was not linked to SUB1. Diverse rice germplasm should be screened for gas film persistence during submergence, as this trait could potentially increase carbohydrate status and internal aeration owing to increased underwater P(N), which contributes to submergence tolerance in rice

    Response of chickpea (Cicer arietinum L.) to terminal drought: Leaf stomatal conductance, pod abscisic acid concentration, and seed set

    Get PDF
    © 2016 The Author. Flower and pod production and seed set of chickpea (Cicer arietinum L.) are sensitive to drought stress. A 2-fold range in seed yield was found among a large number of chickpea genotypes grown at three dryland feld sites in south-Western Australia. Leaf water potential, photosynthetic characteristics, and reproductive development of two chickpea genotypes with contrasting yields in the feld were compared when subjected to terminal drought in 106kg containers of soil in a glasshouse. The terminal drought imposed from early podding reduced biomass, reproductive growth, harvest index, and seed yield of both genotypes. Terminal drought at least doubled the percentage of flower abortion, pod abscission, and number of empty pods. Pollen viability and germination decreased when the fraction of transpirable soil water (FTSW) decreased below 0.18 (82% of the plant-available soil water had been transpired); however, at least one pollen tube in each flower reached the ovary. The young pods which developed from flowers produced when the FTSW was 0.50 had viable embryos, but contained higher abscisic acid (ABA) concentrations than those of the well-watered plants; all pods ultimately aborted in the drough t treatment. Cessation of seed set at the same soil water content at which stomata began to close and ABA increased strongly suggested a role for ABA signalling in the failure to set seed either directly through abscission of developing pods or seeds or indirectly through the reduction of photosynthesis and assimilate supply to the seeds

    Drivers of plant traits that allow survival in wetlands

    Get PDF
    Plants have developed a suite of traits to survive the anaerobic and anoxic soil conditions in wetlands. Previous studies on wetland plant adaptive traits have focused mainly on physiological aspects under experimental conditions, or compared the trait expression of the local species pool. Thus, a comprehensive analysis of potential factors driving wetland plant adaptive traits under natural environmental conditions is still missing.In this study, we analysed three important wetland adaptive traits, i.e. root porosity, root/shoot ratio and underwater photosynthetic rate, to explore driving factors using a newly compiled dataset of wetland plants. Based on 21 studies at 38 sites across different biomes, we found that root porosity was affected by an interaction of temperature and hydrological regime; root:shoot ratio was affected by temperature, precipitation and habitat type; and underwater photosynthetic rate was affected by precipitation and life form. This suggests that a variety of driving mechanisms affect the expression of different adaptive traits.The quantitative relationships we observed between the adaptive traits and their driving factors will be a useful reference for future global methane and denitrification modelling studies. Our results also stress that besides the traditionally emphasized hydrological driving factors, other factors at several spatial scales should also be taken into consideration in the context of future functional wetland ecology.Environmental Biolog

    Variable response of three Trifolium repens ecotypes to soil flooding by seawater.

    Get PDF
    BACKGROUND AND AIMS: Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. METHODS: Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. KEY RESULTS: There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. CONCLUSIONS: The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur

    Tissue tolerance: an essential but elusive trait for salt-tolerant crops

    Get PDF
    For a plant to persist in saline soil, osmotic adjustment of all plant cells is essential. The more salt-tolerant species accumulate Na+ and Cl– to concentrations in leaves and roots that are similar to the external solution, thus allowing energy-efficient osmotic adjustment. Adverse effects of Na+ and Cl– on metabolism must be avoided, resulting in a situation known as ‘tissue tolerance’. The strategy of sequestering Na+ and Cl– in vacuoles and keeping concentrations low in the cytoplasm is an important contributor to tissue tolerance. Although there are clear differences between species in the ability to accommodate these ions in their leaves, it remains unknown whether there is genetic variation in this ability within a species. This viewpoint considers the concept of tissue tolerance, and how to measure it. Four conclusions are drawn: (1) osmotic adjustment is inseparable from the trait of tissue tolerance; (2) energy-efficient osmotic adjustment should involve ions and only minimal organic solutes; (3) screening methods should focus on measuring tolerance, not injury; and (4) high-throughput protocols that avoid the need for control plants and multiple Na+ or Cl- measurements should be developed. We present guidelines to identify useful genetic variation in tissue tolerance that can be harnessed for plant breeding of salt tolerance

    pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NO3−

    Get PDF
    During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H+ influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K+ efflux was continuous. Further experiments used excised coleoptile tips (7–10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO3−, which distinguished two processes involved in pH regulation. Net H+ influx (μmol g−1 fresh weight h−1) for coleoptiles with NO3− was ∼1.55 over the first 24 h, being about twice that in the absence of NO3−, but then decreased to 0.5–0.9 as net NO3− uptake declined from ∼1.3 to 0.5, indicating reduced uptake via H+–NO3− symports. NO3− reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K+ balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO3− supply. Thus, biochemical pHstats and reduced net H+ influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5
    corecore