693 research outputs found

    Impact of Outpatient vs Inpatient ABSSSI Treatment on Outcomes: A Retrospective Observational Analysis of Medical Charts Across US Emergency Departments

    Get PDF
    Background The objective of this study was to characterize treatment of patients with acute bacterial skin and skin structure infections (ABSSSIs) and describe the association between hospital admission and emergency department (ED) visits or readmissions within 30 days after initial episode of care (IEC). Methods This was a retrospective, observational, cohort study of adults with ABSSSI who presented to an ED between July 1, 2012, and June 30, 2013. Patient, health care facility, and treatment characteristics, including unplanned ED visits or readmissions, were obtained through manual chart review and abstraction. Adjusted logistic regression analysis examined likelihood of all-cause unplanned ED visits or readmissions between admitted and nonadmitted patients. Results Records from 1527 ED visits for ABSSSI from 40 centers were reviewed (admitted, n = 578 [38%]; nonadmitted, n = 949 [62%]). Admitted patients were typically older (mean age, 52.2 years vs 43.0 years), more likely to be morbidly obese (body mass index \u3e 40 kg/m2; 17.3% vs 9.1%), and had more comorbidities (Charlson Comorbidity Index ≥ 4; 24.4% vs 6.8%) compared with those not admitted. In the primary analysis, adjusted logistic regression, controlling for comorbidities and severity of illness, demonstrated that there was a similar likelihood of all-cause unplanned ED visits or readmissions between admitted and nonadmitted patients (odds ratio, 1.03; 95% confidence interval, 0.74–1.43; P = .87). Conclusions ABSSSI treatment pathways leveraging outpatient treatment vs hospital admission support similar likelihood of unplanned 30-day ED visits or readmissions, an important clinical outcome and quality metric at US hospitals. Further research regarding the decision criteria around hospital admission to avoid potentially unnecessary hospitalizations is warranted

    Asteroseismology of the open clusters NGC 6791, NGC 6811, and NGC 6819 from nineteen months of Kepler photometry

    Get PDF
    We studied solar-like oscillations in 115 red giants in the three open clusters NGC 6791, NGC 6811, and NGC 6819, based on photometric data covering more than 19 months with NASA's Kepler space telescope. We present the asteroseismic diagrams of the asymptotic parameters \delta\nu_02, \delta\nu_01 and \epsilon, which show clear correlation with fundamental stellar parameters such as mass and radius. When the stellar populations from the clusters are compared, we see evidence for a difference in mass of the red giant branch stars, and possibly a difference in structure of the red clump stars, from our measurements of the small separations \delta\nu_02 and \delta\nu_01. Ensemble \'{e}chelle diagrams and upper limits to the linewidths of l = 0 modes as a function of \Delta\nu of the clusters NGC 6791 and NGC 6819 are also shown, together with the correlation between the l = 0 ridge width and the T_eff of the stars. Lastly, we distinguish between red giant branch and red clump stars through the measurement of the period spacing of mixed dipole modes in 53 stars among all the three clusters to verify the stellar classification from the color-magnitude diagram. These seismic results also allow us to identify a number of special cases, including evolved blue stragglers and binaries, as well as stars in late He-core burning phases, which can be potentially interesting targets for detailed theoretical modeling.Comment: 30 pages, 15 figures, 1 table, accepted to Ap

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur

    Discovery of the Transiting Planet Kepler-5B

    Get PDF
    We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T(eff) = 6300 K, log g = 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 +/- 0.000032 days and a radius of 1.431(-0.052)(+0.041) R(J). Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114(-0.059)(+0.056) M(J) and a mean density of 0.894 +/- 0.079 g cm(-3).NASA's Science Mission DirectorateAstronom

    Kepler-7b: A Transiting Planet with Unusually Low Density

    Get PDF
    We report the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, Mp = 0.43 Mj, but the radius is fifty percent larger, Rp = 1.48 Rj. The resulting density, 0.17 g/cc, is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, Teff = 6000 K. However, it is more massive and considerably larger than the sun, Mstar = 1.35 Msun and Rstar = 1.84 Rsun, and must be near the end of its life on the Main Sequence.Comment: 19 pages, 3 figure

    Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller

    Full text link
    In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all figures. Slight changes to planet frequencies in result
    corecore