38 research outputs found

    Autonomic Management of Large Clusters and Their Integration into the Grid

    Get PDF
    We present a framework for the co-ordinated, autonomic management of multiple clusters in a compute center and their integration into a Grid environment. Site autonomy and the automation of administrative tasks are prime aspects in this framework. The system behavior is continuously monitored in a steering cycle and appropriate actions are taken to resolve any problems. All presented components have been implemented in the course of the EU project DataGrid: The Lemon monitoring components, the FT fault-tolerance mechanism, the quattor system for software installation and configuration, the RMS job and resource management system, and the Gridification scheme that integrates clusters into the Grid

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Transcriptome analysis of <i>Arabidopsis</i> roots after infection with the fungal pathogen <i>Verticillium longisporum</i> and identification of transcriptional regulators of the pathogen response

    No full text
    Verticillium longisporum ist ein Xylem-besiedelnder, bodenbürtiger Pilz, welcher zu gravierenden Ertragseinbußen im Rapsanbau führt. Untersuchungen der Pflanze-Pathogen-Interaktion des auf Brassica-Arten spezialisierten Pilzes können in der Modellpflanze Arabidopsis thaliana durchgeführt werden, da diese anfällig gegenüber V. longisporum ist und die bei Raps beobachteten Krankheitssymptome entwickelt. In der vorliegenden Arbeit sollten genetische Faktoren aus A. thaliana identifiziert werden, welche die Interaktion mit V. longisporum beeinflussen. Ein besonderer Fokus lag auf der Charakterisierung der frühen transkriptionellen Reaktion von A. thaliana-Wurzeln.In einem Microarray-Experiment wurden Transkripte bestimmt, die in Wurzeln einen und drei Tage nach Verticillium-Infektion differentiell exprimiert sind. Die Transkriptomanalyse zeigte, dass die Infektion eine massive transkriptionelle Reprogrammierung auslöst, wobei besonders Transkripte der biotischen Stressantwort induziert werden. Die Microarray-Daten wurden für eine Auswahl von Transkripten in einem Zeitreihen-Experiment durch qPCR validiert und für ein Transkript wurde exemplarisch mittels Luciferase-Reporter-Pflanzen eine lokale Induktion in den direkt mit Pilzmycel in Kontakt stehenden Wurzelbereichen gezeigt.Besonders Biosynthese-Gene des Phytoalexins Camalexin sind in V. longisporum-infizierten Wurzeln transkriptionell induziert. Auch biochemisch konnte in infiziertem Wurzelgewebe eine Camalexin-Akkumulation nachgewiesen werden. In Untersuchungen der Camalexin-Biosynthese-Mutanten pad3 und cyp79b2/b3 konnte nur für die cyp79b2/b3-Mutante eine verstärkte Ausprägung der durch V. longisporum-Infektion ausgelösten Krankheitssymptome gezeigt werden. In der cyp79b2/b3-Mutante ist zusätzlich die Synthese von Indol-Glucosinolaten unterbunden. Für eine Induktion von Indol-Glucosinolat-abstammenden Metaboliten während der Abwehrreaktion spricht die durch Verticillium ausgelöste transkriptionelle Induktion von CYP81F2 und der PEN2-homologen Glycosyl-Hydrolase At3g60120. Eine PEN2/CYP81F2-abhängige Metabolisierung von Indol-Glucosinolat konnte kürzlich als wichtige Komponente der Basalresistenz identifiziert werden (Bednarek et al. 2009; Clay et al. 2009).In einem weiteren Ansatz wurden Transkriptionsfaktor-Überexpressionslinien auf ihre Resistenz gegenüber V. longisporum untersucht. Unter Anwendung einer neu etablierten Transformationsroutine wurde die A. thaliana Transkriptionsfaktor ORF Überexpressions Kollektion (AtTORF-EX) erstellt. In einem Screening wurden Überexpressionslinien von Ethylene Responsiv Element Binding Factors (ERF) nach Linien durchmustert, welche resistent gegenüber systemischer Kolonisation durch V. longisporum sind. Unter den resistenten Kandidaten-Linien traten gehäuft phylogenetisch verwandte ERF-Faktoren der Gruppe IX auf.Außerdem zeigten die Überexpressionslinien der nach V. longisporum-Infektion transkriptionell induzierten Transkriptionsfaktoren ERF#105 und ANAC042 eine erhöhte Resistenz gegenüber V. longisporum. Eine qPCR-Analyse ergab, dass in den ANAC042-Überexpressionslinien die durch V. longisporum-Infektion induzierbaren Transkripte CYP71A12 und At1g26380 konstitutiv exprimiert werden

    Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    No full text
    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.peerReviewe

    High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes

    No full text
    Abstract Background Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. Results For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae. To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi (AbWSD1) and Marinobacter aquaeolei (MaWS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei (MaFAR) with AbWSD1 or MaWS2 led to a high incorporation of C18 substrates in wax esters. The MaFAR/TMMmAWAT2-AbWSD1 combination resulted in the incorporation of more C18:1 alcohol and C18:0 acyl moieties into wax esters compared with MaFAR/AbWSD1. The fusion protein of a WS from Simmondsia chinensis (ScWS) with MaFAR exhibited higher specificity toward C20:1 substrates in preference to C18:1 substrates. Expression of MaFAR/AbWSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by MaFAR/AbWSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina, lines expressing MaFAR/ScWS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed−1 of wax esters, containing 27–34 mol% oleyl oleate. Conclusions The overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds

    Sporisorium reilianum Infection Changes Inflorescence and Branching Architectures of Maize1[C][W][OA]

    No full text
    Sporisorium reilianum is a biotrophic maize (Zea mays) pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how S. reilianum changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. S. reilianum infection promoted the outgrowth of subapical ears, suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed “leafy ear” and “eary ear.” In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, S. reilianum triggered a loss of organ and meristem identity and a loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied by transcriptional regulation of genes proposed to regulate floral organ and meristem identity as well as meristem determinacy in maize. S. reilianum colonization also led to a 30% increase in the total auxin content of the inflorescence as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be the basis for further molecular investigation of the underlying mechanism of S. reilianum-induced alteration of floral development

    MOESM9 of High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes

    No full text
    Additional file 9: Table S5. List of primers used in this study for amplifying DNA sequences of wax ester synthesis enzymes
    corecore